“Wireless sensor and actuator nets, also known as motes and smart dust, are
an emerging computer class based on a new platform, networking structure,
and interface that enable novel, low cost, high volume, applications. This
text and reference is a critical link to create this new class by covering the
field of study for both practitioners and researchers.”

—Gordon Bell, Senior Researcher, Microsoft Corporation

“This book provides both an insightful overview of the emerging field of
wireless sensor networks, and an in depth treatment of algorithmic signal and
information processing issues. An excellent text for both professionals and
students!”

—Deborah Estrin, Center for Embedded Networked Sensing, UCLA

Designing, implementing, and operating a wireless sensor network involves a wide range of disciplines and many
application-specific constraints. To make sense of and take advantage of these systems, a holistic approach is
needed—and this is precisely what *Wireless Sensor Networks* delivers.

Inside, two eminent researchers review the diverse technologies and techniques that interact in today’s wireless
sensor networks. At every step, they are guided by the high-level information-processing tasks that determine how
these networks are architected and administered. Zhao and Guibas begin with the canonical problem of localizing
and tracking moving objects, then systematically examine the many fundamental sensor network issues that
spring from it, including network discovery, service establishment, data routing and aggregation, query
processing, programming models, and system organization. The understanding gained as a result—how different
layers support the needs of different applications, and how a wireless sensor network should be built to optimize
performance and economy—is sure to endure as individual component technologies come and go.

Features

- Written for practitioners, researchers, and students and relevant to all application areas, including
 environmental monitoring, industrial sensing and diagnostics, automotive and transportation, security and
 surveillance, military and battlefield uses, and large-scale infrastructural maintenance.
- Skillfully integrates the many disciplines at work in wireless sensor network design: signal processing
 and estimation, communication theory and protocols, distributed algorithms and databases, probabilistic
 reasoning, energy-aware computing, design methodologies, evaluation metrics, and more.
- Demonstrates how querying, data routing, and network self-organization can support high-level
 information-processing tasks.
Table of Contents

1 Introduction
 1.1 Unique Constraints and Challenges
 1.2 Advantages of Sensor Networks
 1.2.1 Energy advantage
 1.2.2 Detection advantage
 1.3 Sensor Network Applications
 1.3.1 Habitat monitoring: wildlife conservation through autonomous, non-intrusive sensing
 1.3.2 Tracking chemical plumes: ad hoc, just-in-time deployment mitigating disasters
 1.3.3 Smart transportation: networked sensors making roads safer and less congested
 1.4 Collaborative Processing
 1.5 Key Definitions of Sensor Networks
 1.6 The Rest of the Book

2 Canonical Problem: Localization and Tracking
 2.1 A Tracking Scenario
 2.2 Problem Formulation
 2.2.1 Sensing model
 2.2.2 Collaborative localization
 2.2.3 Bayesian state estimation
 2.3 Distributed Representation and Inference of States
 2.3.1 Impact of choice of representation
 2.3.2 Design desiderata in distributed tracking
 2.4 Tracking Multiple Objects
 2.4.1 State-space decomposition
 2.4.2 Data association
 2.5 Sensor Models
 2.6 Performance Comparison and Metrics
 2.7 Summary
 2.8 Appendix A: Optimal Estimator Design
 2.9 Appendix B: Particle Filter

3 Networking Sensors
 3.1 Key Assumptions
 3.2 Medium Access Control
 3.2.1 The S-MAC Protocol
 3.2.2 IEEE 802.15.4 Standard and ZigBee
 3.3 General Issues
 3.4 Geographic, Energy-Aware Routing
 3.4.1 Unicast Geographic Routing
 3.4.2 Routing on a Curve
 3.4.3 Energy-Minimizing Broadcast
 3.4.4 Energy-Aware Routing to a Region
 3.5 Attribute-Based Routing
 3.5.1 Directed Diffusion
 3.5.2 Rumor Routing
 3.5.3 Geographic Hash Tables
 3.6 Summary

4 Infrastructure Establishment
 4.1 Topology Control
 4.2 Clustering
 4.3 Time Synchronization
 4.3.1 Clocks and Communication Delays
 4.4 Reference Broadcasts
 4.4.1 Ranging Techniques
 4.4.2 Range-Based Localization Algorithms
 4.5 Summary

5 Sensor Tasking and Control
 5.1 Task-Driven Sensing
 5.2 Roles of Sensor Nodes and Utilities
 5.3 Information-Based Sensor Tasking
 5.3.1 Sensor selection
 5.3.2 IDSQ: Information-driven sensor querying
 5.3.3 Cluster leader based protocol
 5.3.4 Sensor tasking in tracking relations
 5.4 Joint Routing and Information Aggregation
 5.4.1 Moving center of aggregation
 5.4.2 Multi-step information-directed routing
 5.4.3 Sensor group management
 5.4.4 Case study: sensing global phenomena
 5.5 Summary
 5.6 Appendix A: Information Utility Measures
 5.7 Appendix B: Sample Sensor Selection Criteria

6 Sensor Network Databases
 6.1 Sensor Database Challenges
 6.2 Querying The Physical Environment
 6.3 Query Interfaces
 6.3.1 Cougar sensor database and abstract data types
 6.3.2 Probabilistic queries
 6.4 High-level Database Organization
 6.5 In-Network Aggregation
 6.5.1 Query propagation and aggregation
 6.5.2 TinyDB query processing
 6.5.3 Query processing scheduling and optimization
 6.6 Data-Centric Storage
 6.7 Data Indices and Range Queries
 6.7.1 One-dimensional indices
 6.7.2 Multi-dimensional indices for orthogonal range searching
 6.7.3 Non-orthogonal range searching
 6.8 Distributed Hierarchical Aggregation
 6.8.1 Multi-resolution summarization
 6.8.2 Partitioning the summaries
 6.8.3 Fractional cascading
 6.8.4 Locality preserving hashing
 6.9 Temporal Data
 6.9.1 Data aging
 6.9.2 Indexing motion data
 6.10 Summary

7 Sensor Network Platforms and Tools
 7.1 Sensor Network Hardware
 7.1.1 Berkeley motes
 7.2 Sensor Network Programming Challenges
 7.3 Node-Level Software Platforms
 7.3.1 Operating system: TinyOS
 7.3.2 Imperative language: nesC
 7.3.3 Dataflow style language: TinyGALS
 7.4 Node-Level Simulators
 7.4.1 ns-2 and its sensor network extensions
 7.4.2 Tossim
 7.5 Programming Beyond Individual Nodes: State-centric programming
 7.5.1 Collaboration groups
 7.5.2 PIECES: A state-centric design framework
 7.5.3 Multi-target tracking problem revisited
 7.6 Summary

8 Applications and Future Directions
 8.1 A Summary of the Book
 8.2 Emerging Applications
 8.3 Future Research Directions
 8.3.1 Secure embedded systems
 8.3.2 Programming models and embedded operating systems
 8.3.3 Management of collaborative groups
 8.3.4 Light-weight signal processing
 8.3.5 Networks of high-data-rate sensors
 8.3.6 Google for the physical world
 8.3.7 Closing the loop with actuators
 8.3.8 Distributed information architecture
 8.4 Conclusion