
Energy-optimal Batching Periods for Asynchronous Multistage Data
Processing on Sensor Nodes: Foundations and an mPlatform Case Study ∗

Qing Cao, Dong Wang, Tarek Abdelzaher
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Bodhi Priyantha, Jie Liu, Feng Zhao
Networked Embedded Computing

Microsoft Research
Redmond, WA 98052, USA

Abstract

This paper derives energy-optimal batching periods
for asynchronous multistage data processing on sensor
nodes in the sense of minimizing energy consumption
while meeting end-to-end deadlines. Batching the pro-
cessing of (sensor) data maximizes processor sleep pe-
riods, hence minimizing the wakeup frequency and the
corresponding overhead. The algorithm is evaluated on
mPlatform, a next-generation heterogeneous sensor node
platform equipped with both a low-end microcontroller
(MSP430) and a higher-end embedded systems processor
(ARM). Experimental results show that the total energy
consumption of mPlatform, when processing data flows
at their optimal batching periods, is up to 35% lower than
that for uniform period assignment. Moreover, process-
ing data at the appropriate processor can use as much as
80% less energy than running the same task set on the
ARM alone and 25% less energy than running the task
set on the MSP430 alone.

1 Introduction
In this paper, an optimal batching algorithm is pro-

posed for asynchronous multistage data-processing on
sensor nodes, where optimality refers to minimizing en-
ergy consumption subject to deadline constraints. Sensor
data processing may include outlier detection, filtering,
statistical analysis, correlation, spectrum analysis, CRC
computation, and encryption. These operations can be
grouped into computational stages. Each stage has a con-
stant amount of state to keep, leading to a constant, data-
size-independent overhead, in addition to a processing
time that depends on the amount of data to process. By
operating on data batches (as opposed to on individual
data items), the algorithm maximizes processor sleep du-
rations in between processing bursts, hence minimizing
data-size-independent overhead, and maximizing energy-
efficiency.

A trivially optimal batching algorithm is to wait for an

∗The work presented in this paper is sponsored in part by Microsoft
Research and in part by NSF grants CNS 06-26825, CNS 06-15301, and
CNS 09-16028.

amount of time equal to the data processing deadline less
the time it takes to process one data batch. The accumu-
lated batch is then processed all together. In this design,
each processing stage waits until the previous stage has
finished the batch. Each stage is triggered immediately
by the completion of the predecessor stage(s).

This paper explores an alternative application de-
sign, where appropriately-sized data processing stages
run asynchronously as independent periodic tasks, read-
ing data from input buffers when they wake up and de-
positing into output buffers before going back to sleep.
Admittedly, this design consumes more energy than the
one above, because stages are decoupled by data buffer-
ing, essentially breaking up one big input buffer into
many smaller interstage buffers. Invocation rates of in-
dividual stages are correspondingly increased to keep the
smaller buffers from overflowing. However, this design
is motivated by simplicity. For example, (i) it is lock
free as no synchronization is needed among stages, (ii)
it allows separating complex computation into small “in-
dependent” components, and (iii) it leads to fewer bugs
since simplicity of design contributes to a more reliable
implementation. In a data processing graph where indi-
vidual stages run independently, the question of assign-
ing periods to different stages becomes important. This
question is akin to breaking up the end-to-end data pro-
cessing deadline among stages in a way that maximizes
energy savings while maintaining independence. The op-
timal period assignment algorithm described in this paper
solves the above problem.

If more than one processor is present, a related ques-
tion is where to run each data processing stage. Although
higher-end processors consume more power when ac-
tive, some are disproportionately faster than their lower-
power counterparts. This means that they consume less
energy per byte, as the higher power is consumed for a
much shorter period, leading to a smaller energy product.
A problem is the data-size-independent overhead, which
is often also processor-speed-independent (e.g., wakeup
cost and saving data to flash). Given enough batching, a
break-even point is reached where the increased energy-
efficiency in processing the batch outweighs the larger



data-size-independent overhead. Task to processor as-
signment therefore depends on whether or not the optimal
batching period is larger than the breakeven point.

We implement our optimal batching algorithm on
mPlatform [20], a heterogeneous sensor node platform
consisting of one higher-end processor (ARM) and one
lower-end microcontroller (MSP430). It represents a
next generation of sensor node platforms, evolving from
earlier platforms that used to include a low-end proces-
sor alone. The ARM, on mPlatform, is more power-
consuming and has a higher idle power and startup over-
head. However, it is also more energy-efficient when
utilized continuously. We show that up to 25% sav-
ings can be achieved in energy consumption when us-
ing our optimal batching algorithm compared to the case
when everything runs on the lower-end microcontroller
alone. The mPlatform is thus not only suitable for high-
end sensor network applications, where the ARM helps
with large computational requirements, but also suitable
for very low-power applications, where traditional low-
power platforms are unable to deliver the right energy-
efficiency.

The remainder of the paper is organized as follows.
Section 2 describes related work. Section 3 presents the
task model and problem formulation. Section 4 describes
optimal batching algorithm. Evaluation results from em-
pirical measurements are presented in Section 5. Finally,
the paper concludes with Section 6.

2 Related Work

There exists extensive research on system-level power
optimization for embedded and real-time systems. Ear-
lier studies are limited to single processor systems, and
using frequency and voltage scaling as power control
“knobs” under application performance or time con-
straints [21, 16, 1, 25]. Wakeup energy and time delay
cost can be substantial in duty-cycled embedded devices.
In [3], Benini et. al. highlighted the notion of break-even
time to accommodate the nontrivial energy cost of wak-
ing up a processor from sleep. Multiprocessor and dis-
tributed real-time scheduling are significantly more com-
plicated than single processor cases. One needs to con-
sider both task to processor assignment and processor
state control [15, 19]. In general, the problem of min-
imizing energy consumption of dependent tasks under
hard real-time constraints is NP hard for heterogeneous
multiprocessors. In [2], Baruah considers the task alloca-
tion problem on heterogeneous multiprocessor platforms
without task precedence constraints nor hardware con-
figurability. In [14], [22], and [24] the objectives are to
maximize, respectively, the throughput, the minimal task
slack, and task extensibility. An integer linear program-
ming formalism has been proposed in [11] to compute
the schedule.

Dataflow programming models have long been used
in signal processing and control applications [17, 4]. Re-
cently, static and dynamic dataflow models have been

proposed to program sensor networks [9, 10, 23], since
they match well with the data streaming abstraction of
the application domain. Typical dataflow scheduling
optimize for throughput [12, 8], dynamic memory us-
age [6], or code size [5]. Our task model is also inspired
by time-triggered architectures and languages, such as
Giotto [13]. In these models, tasks are woken up period-
ically to process their inputs and produce their outputs.
However, unlike Giotto, which uses a single buffer and
allows newly generated data to override older, uncon-
sumed data, our model keeps a traditional FIFO queue
model for communication between tasks. This matches
the application requirements for most sensor networks,
where each collected piece of data needs to be processed.

Energy optimal dataflow scheduling has been ex-
plored in the context of buffer management. The most
relevant work is on static or dynamic buffer insertion for
multi-media application [18, 7]. The idea is that by
buffering the inputs, one can scale down the processor
to a lower power state, since buffer insertion is not com-
putationally intensive. Our work is different in that we
take advantage of power diversity in heterogeneous pro-
cessors and address the wake up energy cost.

3 Model and Problem Statement

In this section, we formulate the problem of finding the
optimal batching period for each data processing stage,
given a particular task-to-processor allocation, such that
energy savings are maximized subject to deadline con-
straints. Later, we discuss how to compute the task-to-
processor allocation. In practice, allocation is determined
by the nature of the task. For example, the MSP430 is
more energy-efficient than the ARM at simple mathemat-
ical and logical instructions, whereas the ARM is more
energy-efficient at complex floating-point operations. In
some cases, it also depends on period.

A point of departure in this paper from most prior
schedulability literature lies in its use of a data-centric
task model, where data are a first-order abstraction, and
where the amount of data determines the amount of com-
putation.

Consider a sensor network node with multiple sensors.
Each sensor generates data at a given rate, creating a data
flow. Data flows stream through multiple stages of pro-
cessing on the node, each performed by its own periodic
task. Thus, the topology mentioned in the paper is the
topology of multistage processing tasks in a single node.
Following a periodic task model, tasks will execute once
somewhere within each period (as opposed to being ex-
ecuted exactly on period boundaries). Formally, we de-
fine the notion of a path, p, as an ordered set of periodic
tasks that process the data stream sequentially in the order
these tasks appear on the path. We say that a pair of con-
secutive tasks Tj and Ti on the path share a (directional)
link Tj → Ti, and that Tj is Ti’s immediate predecessor.
For example, Figure 1 shows a task set with two paths,
p1 = (T2, T3, T4) and p2 = (T1, T4). Tasks T3 and T4 are



an example of a pair of tasks that share a link (T3 → T4),
where T3 is the immediate predecessor of T4. Let Rji
denote the average rate of data transfer across the link
Tj → Ti. Data are transferred asynchronously. The pro-
ducer deposits data into a shared buffer. The consumer
then reads from that buffer at a later time.

Figure 1. An Example of Two Paths

Let Pi denote the period of task Ti. We call it the
batching period to emphasize the fact that this period
does not stem from physical requirements such as con-
trol loop stability or sampling rate. It is simply the period
chosen over which data are buffered before they are pro-
cessed in batch by Ti. When task Ti is invoked, it reads
all the data from each of its input buffers, processes the
data, and deposits results into its output buffer(s). The
amount of data read by task Ti every period is thus equal,
on average, to the sum

∑
j PiRji, carried over the set of

its immediate predecessors, j ∈ Predi.
After processing all the data in its queues, task Ti

stops and waits until the next period. The average com-
putation time of task Ti, on processor k, denoted by Cki ,
is the sum of a fixed, data-independent component, cki,0
(e.g., wakeup cost and saving state to flash), and a com-
ponent that grows linearly with data size. In other words:

Cki = cki,0 +
∑

j∈Predi

ckjiRjiPi (1)

where ckji is a constant that reflects the time it takes to
communicate, read and process each unit of data that ac-
cumulated from predecessor Tj . Observe that since rates,
Rji are fixed, the above equation can be rewritten as:

Cki = cki,0 + cki Pi (2)

where cki is a constant. In theory, one might be tempted
to add other terms to Equation (2), reflecting algorithms
of nonlinear complexity. Most algorithms that operate on
data streams, however, use incremental forms that oper-
ate on fixed-size updates (e.g., one sample or one window
of data at a time). They have the same complexity per up-
date. Hence, while the computation might have arbitrary
complexity in other parameters, it is linear in the number
of updates processed, and hence linear in the input data
size or the batching period.

If the energy it takes to execute cki,0 and cki is aki and
bki , respectively, the total amount of energy Eki needed,
on average, each time task Ti runs on processor k, is:

Eki = aki + bki Pi (3)

Observe that bki may include the cost of communicating
data from the other processor, if the respective stages are
not allocated to the same one. Assuming that the pro-
cessors sleep when not executing any tasks and that the
sleep energy is negligible†, the average power W k

i con-
sumed by processor k on executing task Ti is:

W k
i =

aki
Pi

+ bki
i (4)

Given each task, Ti, 1 ≤ i ≤ n, executing on proces-
sor ki, and the paths pl, 1 ≤ l ≤ m, defined on those
tasks, it is desired to find the optimal batching period
Pi, for each task, Ti, to minimize W , the total (average)
power consumption:

W =
∑

1≤i≤n

(
aki
i

Pi
+ bki

i ) (5)

subject to end-to-end time constraints on data paths. Data
on path p must traverse the path from sensor to final out-
put (e.g., the radio buffer to send data to the destination)
within an end-to-end delay, Dp. Consider the flow of one
byte of data within a sensor node. This byte, having been
generated by a sensor, will wait for the next invocation
of the first task on its path. In a system where tasks exe-
cute independently once per period, the maximum sepa-
ration between two task invocations is upper bounded by
two periods, which is the maximum waiting time of the
packet on the next task. Once the task operates on its in-
put data, it produces a result, which in turn may have to
wait for up to two periods on the next task. Hence, for
the end-to-end path deadline, Dp to be met, the batching
periods must satisfy the constraint 2

∑
i:Ti∈p Pi ≤ Dp.

This constraint is rewritten more conveniently to say that
the sum of the batching periods must add up to no more
than half the end-to-end deadline:∑

i:Ti∈p
Pi ≤ Dp/2 (6)

This completes the formulation of the optimization
problem.

4 Optimal Batching Periods
The problem formulated in the previous section can be
easily solved using the method of Lagrange multipliers.
First, we formulate the Lagrange function, L, to be mini-
mized, which is defined as:

L =
n∑
i=1

(
aki
i

Pi
+ bki

i ) +
m∑
p=1

λp(
∑
i:Ti∈p

Pi −Dp/2) (7)

Let us denote the optimal batching period of task Ti by
P ∗i . Setting the derivative dL/dPi = 0 at Pi = P ∗i
yields:

P ∗i =

√
aki
i

2
∑
p:Ti∈p λp

(8)

†It is trivial to extend this assumption to the case where sleep energy
is significant but, in practice, it is usually negligible.



Similarly, obtaining the derivative dL/dλp yields:∑
i:Ti∈p

P ∗i = Dp/2 (9)

The solution to the system of Equation (8) and Equa-
tion (9) can be computed numerically using the following
pseudocode, which will converge to the optimal periods
given a sufficiently small constant K:

loop

∀i : Pi =
√

a
ki
i

2
∑

p:Ti∈p λp

∀p : λp = λp +K(
∑
i:Ti∈p Pi −Dp/2)

end loop

Below, we derive an analytic solution for any non-acyclic
aggregation graph topology. Data aggregation or fusion
is the most common function of sensor networks. To de-
rive results for arbitrary directed acyclic graphs, we first
consider the chain and star topology. For notational sim-
plicity, since the results in this section are for a particular
task allocation, we omit below the processor index from
the processor-dependent constants aki

i and bki
i . Hence,

we shall use ai and bi to refer to the corresponding en-
ergy overheads of task Ti on the processor that Ti runs
on.

4.1 The Chain Topology
In this section, we consider a set of n tasks, T1, ..., Tn,
that form a single path, p. Note that, the results are triv-
ially generalizable to multiple independent paths, since
they are applicable to each path separately. For a chain
topology, since each task is precisely on one path, Equa-
tion (8) reduces to:

P ∗i =
√

ai
2λp

(10)

Substituting for P ∗i in Equation (9) and rearranging to
solve for λp, we get:

λp =
2(

∑
i:Ti∈p

√
ai)2

D2
p

(11)

Finally, substituting from Equation (11) into Equa-
tion (10), we get:

P ∗i =
√
ai∑

i:Ti∈p
√
ai

Dp

2
(12)

The result is intuitive. First, note that the sum of the
optimal batching periods of tasks on a given path p adds
up to Dp/2, as expected. More interestingly, the periods
of different tasks on the path split Dp/2 proportionally
to the square root of their fixed energy cost ai. This may
be expected. Since the energy overhead ai is spent every
time the task runs (regardless of how much data it pro-
cesses), tasks with a high ai should run less often (i.e.,
have a higher batching period) than tasks with a small
ai. Note that, the data size dependent cost, bi, does not
affect period allocation. This might have been expected
as well because, ultimately, the same amount of data are
processed. Hence, the total energy spent on data process-
ing does not depend on the batching period and does not

affect the outcome of the optimization problem. In view
of the above, we can state the following theorem:

Theorem 1: Chain Period Allocation: Given a set of n
periodic tasks, T1, ..., Tn that form a single path, with an
end-to-end delay constraint, D, where task Ti executes
on processor ki, the batching period of task Ti is Pi, and
the energy expended by task Ti on processor ki is ai +
biPi, the optimal batching periods P ∗1 , ..., P ∗n partition
D/2 proportionally to

√
a1: ...:

√
an.

Proof: The proof follows trivially from Equation (12).

It is interesting to notice that a chain of n tasks, T1,
..., Tn, described above, can be reduced to an equivalent
single task, Teq , in the sense that when Teq is executed
at its optimal batching period, P ∗eq , it consumes the same
average power as the original chain of tasks, executing at
their optimal batching periods. From Equation (4), this
means:

aeq
P ∗eq

+ beq =
∑

1≤i≤n

(
ai
P ∗i

+ bi) (13)

Substituting for P ∗i from Equation (12) and rearranging,
we get:

aeq
P ∗eq

+ beq =
(
∑

1≤i≤n
√
ai)2

D/2
+

∑
1≤i≤n

bi (14)

From Equation (9), the optimal period, P ∗eq , is trivially
D/2, for a single task. Substituting for D/2 with P ∗eq in
Equation (14) and matching the right hand side to the left
hand side, we get:

aeq = (
∑

1≤i≤n

√
ai)2 (15)

beq =
∑

1≤i≤n

bi (16)

This result is stated as the following theorem.

Theorem 2: Chain Reduction: At their optimal batch-
ing periods, a set of n periodic tasks, T1, ..., Tn that
form a single path, is equivalent to a single task of aeq =
(
∑

1≤i≤n
√
ai)2 and beq =

∑
1≤i≤n bi.

Proof: The proof follows trivially from Equation (15)
and Equation (16).

4.2 The Star Topology
Consider a scenario where outputs of tasks T1, ..., Tn

are inputs to a single task T0. Let us call the former, leaf
tasks and the latter the aggregator task. Hence, there are
n paths, where each path p is composed of task Tp and
task T0. We expect that T0 fuses data that were collected
around the same time. Hence, for meaningful aggrega-
tion, the end-to-end deadline, Dp, of each path p that
merges into T0 should usually be the same. Let us de-
note this common deadline by D. Equation (8) for the
optimal period reduces to:



P ∗0 =

√
a0

2
∑

1≤j≤n λj
(17)

P ∗i =
√

ai
2λi

1 ≤ i ≤ n (18)

Substituting for P ∗0 and P ∗i into Equation (9), we get:√
ai
2λi

+

√
a0

2
∑

1≤j≤n λj
= D/2. (19)

Since both the right hand side and the second term of
the left hand side are constants that do not depend on i,
it follows that

√
ai/(2λi) is constant or λ1/a1 = ... =

λn/an, from which λj = λiaj/ai. Substituting in Equa-
tion (19) and solving for λi, we get:

λi =
2ai
D2

(1 +

√
a0∑

1≤j≤n aj
)2 (20)

Finally, substituting for λi in Equation (18), gives:

P ∗i =

√∑
1≤j≤n aj√∑

1≤j≤n aj +
√
a0

D

2
1 ≤ i ≤ n (21)

Observe that the equation states that the optimal period is
the same for all leaf tasks. By subtracting from D/2, the
optimal period of the aggregator task is:

P ∗0 =
√
a0√∑

1≤j≤n aj +
√
a0

D

2
(22)

In other words, in a star topology with an aggregator task
T0, the optimal periods of the aggregator task and the leaf
tasks divide D/2 in proportion to

√
a0 (for the aggrega-

tor) to
√∑

1≤j≤n aj (for each of the leaf tasks). This
is consistent with the results of Section 4.1. Since the
leaf tasks run in parallel at the same period, their energy
overheads, ai add up into one equivalent task of the com-
bined fixed energy cost

∑
1≤j≤n aj . That equivalent task

is in a chain configuration with the aggregator task. From
Section 4.1, we know that tasks in a chain split D/2 pro-
portionally to the square root of their fixed energy costs,
which leads to Equation (22). The result is stated more
formally as the following theorem.

Theorem 3: Star Period Allocation: Given a set of n
periodic leaf tasks, T1, ..., Tn in a star topology with an
aggregator task T0, and an end-to-end delay constraint,
D, where the batching period of task Ti is Pi and the
energy expended by task Ti on processor k is ai + biPi,
the optimal batching periods P ∗i , ..., P ∗0 on each path (Ti,
T0) partition D/2 proportionally to

√∑
1≤j≤n aj ,

√
a0.

Proof: The proof follows trivially from Equation (21)
and Equation (22).

As in the case of the chain reduction theorem, it is now
possible to prove the following.

Theorem 4: The Star Reduction: At their optimal
batching periods, a set of n periodic tasks, T1, ..., Tn
that form leaves of a star, is equivalent to a single task
of aeq =

∑
1≤i≤n ai and beq =

∑
1≤i≤n bi.

Proof: The proof follows the derivation steps of the chain
reduction theorem and hence will not be repeated. Intu-
itively, the theorem arises from observing that leaf tasks
execute at the same period and hence can be lumped to-
gether into one task of their aggregate energy consump-
tion.
4.3 Period Allocation in Aggregation Trees

The most common topology for data flows on a sensor
node is that of an aggregation tree.Typically data are col-
lected from multiple sensors, filtered, processed, and then
fused. The results stated in Theorems 1 through 4 allow
optimal batching periods to be analytically computed for
arbitrary aggregation trees. This is best illustrated by an
example.

Figure 2. Optimal Period Allocation
Figure 2-a shows a system of five tasks, T1, ..., T5,

forming an aggregation tree sinked in T5. The consumed
fixed energy overhead ai for the respective tasks is 4, 4,
1, 4, and 9, as shown in figure. The end-to-end deadline
is 48 seconds. It is desired to optimally allocate batching
periods.

We first use Theorem 2 to reduce tasks T1 and T2, that
form a chain, into one equivalent task, called T12, with
a12 = (

√
4 +
√

4)2 = 16. Similarly, tasks T3 and T4,
that also form a chain, can be reduced into an equivalent
task, T34, with a34 = (

√
1 +
√

4)2 = 9. Next, tasks T12

and T34, that form leaves of a star with T5 as the aggrega-
tor can be reduced by Theorem 4 into an equivalent task
T1234 with a1234 = 16 + 9 = 25. This results in Fig-
ure 2-b. The figure shows a chain of two tasks. Theorem
1 says that their respective optimal batching periods split
half the end-to-end deadline proportionally to

√
ai or in

the ratio of 5:3. Hence, the optimal batching period of
T5 is (3/8) ∗ 24 = 9 seconds. Each of the two chains
must thus finish within 24 − 9 = 15 seconds. By Theo-
rem 1, the chain composed of tasks T1 and T2 split their
15 seconds equally, each getting a batching period of 7.5.
Similarly, tasks T3 and T4 split their 15 seconds in the
ratio 1:2. Hence, the optimal batching periods for tasks



T1 and T2 are 5 and 10, respectively. Moreover, for data
processing topology of cycles, it can basically be treated
as a special chain topology where the output of the end
task happens to be the input of the first task.

4.4 Task to Processor Assignment
The results presented earlier determine the period as a
function of parameters that depend on the allocation of
tasks to processors. Hence, the period assignment prob-
lem is not entirely separable from task-to-processor allo-
cation. In general, the number of tasks on a sensor node
is usually quite limited (say, 5-10). Given that each task
has only two assignment options, the total number of pos-
sible assignments is tractable (30-1000). It is therefore
entirely feasible to run the optimal period assignment for
each possible task-to-processor allocation and choose the
allocation that results in the minimum energy solution to
the optimal period assignment problem across all alloca-
tions. Greedy heuristics can also be trivially constructed,
for example, by computing the minimum period for each
task at which batching benefits outweigh wakeup over-
head, then allocating to the higher-end processor only
those tasks whose optimal batching period on that proces-
sor is larger than the aforementioned minimum period.
As mentioned in the introduction, we do not claim task
to processor assignment as a contribution of this paper.

5 Evaluation
In this section, we evaluate the performance of the

proposed optimization on mPlatform. This mote plat-
form represents the next generation of sensor nodes, that
exploits heterogeneity as opposed to relying on low-end
microcontrollers alone. This section is organized as fol-
lows. First, we profile the energy properties of differ-
ent mPlatform processor boards. Then, we compare the
batching period optimization approach to several base-
lines and evaluate the performance of heterogeneous allo-
cation (with optimal batching periods) compared to run-
ning the task set on one of the processors of mPlatform
alone. Finally, we evaluate the energy cost inherent in
implementing processing stages as independent, asyn-
chronously executed tasks.

5.1 Energy Profiling
Parameter MSP ARM
Frequency 16MHz 60MHz
Active Current (mA) 8.61 75
Active Power (mW ) 38.745 337.5
Sleep Current (µA) 17 150
Sleep Power (µW ) 76.5 675
Wakeup time (ms) 0.7 3
Wakeup energy (µJ) 7.43 217.4
Flash access energy (µJ/byte) 0.826 1.422
Inter-board Transfer time (µs/byte) 2
Inter-board Transfer energy (µJ/byte) 0.65
Sensing Energy (µJ/byte) 1.64

Table 1. Energy Profiling Comparison of
MSP Board and ARM Board. Board Supply
Voltage is 4.5V.

As we mentioned earlier, the low-end and high-end
processors have their unique but different power char-
acteristics and types of instructions that they are more
energy-efficient at. We first carry out experiments to
profile the energy properties of the two types of proces-
sor boards on mPlatform. The low-end processor board
is equipped with an MSP430F2618 processor while the
high-end processor board is equipped with an ARM
LPC2138 processor.

In our experiments, we monitor, through an oscillo-
scope, the total real-time current of the entire proces-
sor board while running tasks. To ensure that the oscil-
loscope is synchronized with task execution, we use a
pulse, toggled in software, on a GPIO pin of each proces-
sor. The pulse on this pin is used to trigger the horizontal
scan of the oscilloscope, essentially causing it to display
the waveform of the current consumed by the task, which
is measured from the voltage drop across a small resistor
(7.1 Ω) that is in series with the mPlatform node. The
integral of the current readings over the execution time
of the task (multiplied by processor board voltage) yields
the total energy the task consumes. The measured energy
profiles of two types of processor boards in basic states
is summarized in Table 1. By comparing the ARM board
with the MSP board, we observe that the ARM board has
higher active power, sleep power, wakeup and flash ac-
cess cost than the MSP board. Moreover, as the sensor
resides on the MSP board, data to be processed on the
ARM board need to be transferred from the MSP board,
inter-board transfer overhead is given in the table.

The ARM board can only be more energy efficient
than the MSP board when bARMi is smaller than MSP
bMSP
i . Table 1 compares the basic energy characteris-

tics of the two processors. To compare energy expended
on computation, one also needs to understand how ef-
ficient each processor is at processing different instruc-
tions and data types. Table 2 compares the times and
energy spent in performing some basic operations by the
ARM and MSP processor boards on different data types.
Please note that these numbers are for the entire board
and hence include energy consumption by all circuitry in-
volved. Observe that different operations and data types
have different energy efficiency on different boards. To
be more specific, according to the table, the ARM board
is more energy efficient at multiplication and division for
most data types than the MSP board. This is most obvi-
ous for the uint 32 (long integer) data type. In contrast,
the MSP board is better at other operations like addition,
subtraction, bit operations, relations and logic. This is
likely because the ARM processor is a 32-bit architecture
which is good at handling long data types and complex
operators while the MSP processor is a 16-bit architec-
ture which is good at handling short data types and simple
operators. Numbers in bold in Table 2 highlight which
board is more energy efficient when. The results from
this experiment give us an idea of what kinds of tasks
will be more energy efficient on each processor board.



ARM MSP
OPERATION Data Type Time(µs) Energy (µJ) Time(µs) Energy (µJ)

ARITHMETIC

Multiply

uint 32 0.66 0.22275 16.2 0.62767
uint 16 0.66 0.22275 9.8 0.37970
float 1.21 0.40838 20.6 0.79815
double 1.9 0.64125 20.9 0.80977

Divide

uint 32 1.12 0.378 26.5 1.02674
uint 16 1.12 0.378 10.1 0.39132
float 2.45 0.82688 26.2 1.01512
double 8.32 2.808 26.2 1.01512

Add

uint 32 0.61 0.20588 2.2 0.08524
uint 16 0.66 0.22275 1.4 0.05424
float 1.5 0.50625 10.1 0.39132
double 2.1 0.70875 10.2 0.3952

Subtract

uint 32 0.61 0.20588 2.2 0.08524
uint 16 0.66 0.22275 1.4 0.05424
float 1.5 0.50625 10.1 0.39132
double 2.2 0.7425 10.2 0.3952

BIT OPERATION

AND uint 32 0.48 0.162 1.6 0.06199
uint 16 0.48 0.162 1.2 0.04649

OR uint 32 0.48 0.162 1.68 0.06509
uint 16 0.49 0.16538 1.2 0.04649

XOR uint 32 0.49 0.16538 1.6 0.06199
uint 16 0.49 0.16538 1.2 0.04649

SHIFT uint 32 0.46 0.15525 3.7 0.14336
uint 16 0.5 0.16875 3.4 0.13173

RELATION

uint 32 0.64 0.216 2.4 0.09299
≤≥ uint 16 0.68 0.2295 1.7 0.06587
≡6= float 1.18 0.39825 3.6 0.13948

double 1.35 0.45563 3.6 0.13948

LOGIC AND OR
NOT All 0.31 0.10463 0.7 0.02712

Table 2. Comparison of Basic Operations on Two Processor Boards Across Different Data Types

5.2 Task Set Generation

In order to evaluate energy efficiency of representative
data processing, we select some representative routines
in wireless sensor networks and digital signal processing
to construct our task sets. The routines we implement and
use in our experiments are: Digital Filter, Fast Fourier
Transform (FFT), Statistics (mean, standard deriva-
tion, correlation), Cyclic Redundancy Check (CRC),
Checksum, Encryption and Decryption. By pipelining
these basic routines, we create several task templates
that represent typical data processing and aggregation
flows in sensor networks, including both chain and
star topologies discussed in Section 4. For example, a
chain template might be given by the regular expression:
(Filter)(Statistics)(Filter)(FFT )(CRC)(Encrypt).
Each data flow is an instantiation of one such template.

Moreover, each of the above routines is parameterized
to save and restore a different amount of state in Flash
memory when the processor goes to sleep. For example,
the digital filter needs to save a different amount of state
depending on the order of the filter. Such flash access
overhead is data-independent and encountered once ev-
ery batching period (because state can be stored in RAM
until the batch is finished). The measured flash access en-
ergy profiles for both MSP and ARM boards are shown in

Figure 3. Observe that the energy consumed on flash ac-
cess is a step-like function of the number of bytes written.
Because expensive flash operations happen at block gran-
ularity, there are jumps at block boundaries(and different
processors have a different block size). Thus, for a task
i, the ai value is calculated as ai=a

wakeup
i +astatei , where

awakeupi is the processor wakeup cost and astatei is the
overhead of saving and restoring state into Flash mem-
ory. The bi value is given by bi=b

proc
i +bcommi , where

bproci is the cost to process the data that can be computed
by having each routine process an increasing number of
data units and computing the slope of the energy curve
with data size, and bcommi is the read and communication
overhead to send data to the appropriate processor board.

5.3 Experiments with Batching Periods
In this section, we evaluate the performance of the op-

timal batching period assignment on a single processor,
comparing it with several baseline approaches. The het-
erogeneous processor assignment is evaluated in Section
5.4. We use the task model presented in Section 4, and
carry out experiments for both the chain and star topol-
ogy on MSP and ARM boards respectively. We incor-
porate all the overheads mentioned in Section 5.1 in the
evaluation. The power and energy numbers used are from
the measurements listed in Table 1.



Figure 4. Comparison for Chain Topology on
MSP

Figure 5. Comparison for Star Topology on
MSP

(a) Flash Access Overhead for MSP

(b) Flash Access Overhead for ARM

Figure 3. Flash Access Overhead for MSP
and ARM

We first evaluate the batching period assignment on
the MSP board. For each topology, we generated 20
workflows, each of them is selected from the task tem-
plates we discussed in the previous section. We adopt an
end-to-end deadline of 48 seconds. The optimal batch-
ing period assignment is compared to a uniform period
assignment (all periods are the same) and a random as-
signment. For fairness, all assignments satisfy the con-
straint that the sum of the periods adds up to half the path
deadline. Each data point on a graph is repeated 1000
times and the average power consumption is computed.
For the random assignment, we also show the maximum

and minimum power consumption across the 1000 exper-
iments.

Figure 4 demonstrates the results for the chain topol-
ogy on an MSP board. The X-axis is the number of tasks.
The Y-axis is the increase (in percentage) of power con-
sumption compared to the optimal case. Since the opti-
mal case is used as an implicit baseline, it is not plotted.
For the random case, the maximum, minimum, and av-
erage increase are plotted. Observe that the optimal pe-
riod assignment always achieves lower power consump-
tion compared to other baselines.

Figure 5 demonstrates the results of the experiment
repeated for the star topology on the MSP board. Consis-
tent with the previous example, we compared the random
and uniform period assignment to the optimal period as-
signment. Again, we observe that the optimal period as-
signment achieves a lower power consumption compared
to the other approaches.

We repeat the same experiments for the two topolo-
gies on the ARM boards as well. Results are shown in
Figure 6 and Figure 7. We observe that the optimal batch-
ing period assignment is better than other approaches in
terms of average power consumption.

5.4 Experiments with Optimal Task Assign-
ment

Finally, we compare the performance of assigning
tasks to only one of processor boards vs the optimal het-
erogeneous processor board assignment. Figure 8 and
Figure 9 compare the energy consumed by the heteroge-
neous assignment to assignment on the MSP only and the
ARM only, respectively. Observe that utilizing both pro-
cessors saves a considerable amount of energy compared
to using MSP alone (nearly 25% savings) or ARM alone
(around 80% savings). The figures show energy sav-
ings for a different number of tasks under varying Ri,in
values. Interestingly, compared to the MSP processor,
heterogeneous assignment saves more energy when the
Ri,in is larger. In contrast, for the ARM, the algorithm
saves more when the Ri,in is smaller. The reason is that
tasks that have a smaller bi on the ARM board than on the
MSP board need to process a certain amount data in each



Figure 6. Comparison for Chain Topology on
ARM

Figure 7. Comparison for Star Topology on
ARM

Figure 8. Heterogeneous Assignment versus
MSP

Figure 9. Heterogeneous Assignment versus
ARM

batching period to get enough energy savings to over-
come the fixed overheads. Therefore, having a higher
data rate for such tasks makes the the ARM more effi-
cient (while a lower rate favors the MSP). Results from
above experiments validate our claim that we can achieve
better energy efficiency by exploiting the processor het-
erogeneity with an optimal batching period allocation in
sensing applications.

5.5 The Cost of Asynchrony
The reader is reminded that the paper starts with an

assumption on application structure. Namely, we con-
sider applications where the processing of each data flow
is structured as a set of independent periodic tasks, each
executing on the flow independently, without synchro-
nization with other tasks. Buffers between stages make
such independence possible. The approach is motivated
by advantages of simplicity, separation of concerns, and
possibly increased reliability as a result of fewer bugs,
compared to designs where synchnization primitives are
used to trigger stage-execution in a synchronized fashion.
Next we examine the cost paid for asynchrony. To do so,
we compare our optimal period assignment to the case
where all processing stages are lumped in one that exe-
cutes at a period equal to the end-to-end data processing
deadline. It is clear that the latter case should use less

energy as it allows for more batching.
We run same experiments as in the previous sec-

tions for the two approaches. Figure 10 shows the
overhead paid in our optimal period assignment com-
pared to the synchronized case. Observe that for a
large number of tasks and small data rates, the cost of
asynchrony is relatively high. This is because the av-
erage batching period becomes smaller in our approach
as the number of tasks increases. When the data rate is
small, the data-dependent energy component for both ap-
proaches shrinks, magnifying the effects of the data-size-
independent cost encountered. We conclude that applica-
tion designers should choose with care which approach
to use. The choice may depend on many factors includ-
ing component availability nature of interfaces, and of
course energy implications. For a system that uses the
asynchronous approach, our contribution lies in optimiz-
ing performance while maintaining independence among
processing stages.

6 Conclusions
This paper describes how to optimally amortize en-

ergy overheads by batching sensor data processing, when
sensor data flows are processed asynchronously by stages
implemented as independent periodic tasks. An algo-
rithm was developed for computing the optimal batch-



Figure 10. The Cost of Asynchrony

ing period for tasks involved in sensory data processing,
with a special emphasis on aggregation trees. Experimen-
tal results, measured on mPlatform, show that the opti-
mal batching period algorithm saves energy over other
baselines for batching period assignment. Results also
show that running some of the batched tasks on a higher-
end processor can save energy compared to running all
on the lower-end processor. This approach is useful for
saving energy in sensor applications where sensor data
pipelines are manipulated by independently executed pe-
riodic stages.

References

[1] A. Acquaviva, L. Benini, and B. Riccò. Processor fre-
quency setting for energy minimization of streaming mul-
timedia application. In CODES, pages 249–253, 2001.

[2] S. Baruah. Cost efficient synthesis of real-time systems
upon heterogeneous multiprocessor platforms. In Proc.
of 18th International Parallel and Distributed Processing
Symposium (IPDPS’04), pages 120 – 128, 2004.

[3] L. Benini, A. Bogliolo, and G. De Micheli. A survey of
design techniques for system-level dynamic power man-
agement. pages 231–248, 2002.

[4] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous lan-
guages 12 years later. Proceedings of the IEEE, 91(1):64–
83, Jan 2003.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Syn-
thesis of embedded software from synchronous dataflow
specifications. J. VLSI Signal Process. Syst., 21(2):151–
166, 1999.

[6] J. T. Buck. Scheduling dynamic dataflow graphs with
bounded memory using the token flow model. PhD thesis,
1993.

[7] L. Cai and Y.-H. Lu. Dynamic power management using
data buffers. In DATE ’04: Proceedings of the conference
on Design, automation and test in Europe, pages 526–531,
Washington, DC, USA, 2004. IEEE Computer Society.

[8] L.-F. Chao and E. H.-M. Sha. Scheduling data-flow graphs
via retiming and unfolding. IEEE Trans. Parallel Distrib.
Syst., 8(12):1259–1267, 1997.

[9] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The design and implementation
of a declarative sensor network system. In SenSys ’07: Pro-
ceedings of the 5th international conference on Embedded

networked sensor systems, pages 175–188, New York, NY,
USA, 2007. ACM.

[10] L. Girod, K. Jamieson, Y. Mei, R. Newton, S. Rost,
A. Thiagarajan, H. Balakrishnan, and S. Madden.
Wavescope: a signal-oriented data stream management
system. In SenSys ’06: Proceedings of the 4th interna-
tional conference on Embedded networked sensor systems,
pages 421–422, New York, NY, USA, 2006. ACM.

[11] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic,
B. Priyantha, and F. Zhao. Energy-optimal software par-
titioning in heterogeneous multiprocessor embedded sys-
tems. In DAC, pages 191–196, 2008.

[12] S. Ha and E. A. Lee. Compile-time scheduling of dynamic
constructs in dataflow program graphs. IEEE Trans. Com-
put., 46(7):768–778, 1997.

[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto:
A time-triggered language for embedded programming. In
EMSOFT, pages 166–184, 2001.

[14] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer. An auto-
mated exploration framework for fpga-based soft multipro-
cessor systems. In CODES+ISSS, pages 273–278. ACM
Press, 2005.

[15] A. Khemka and R. K. Shyamasundar. An optimal multi-
processor real-time scheduling algorithm. Journal of Par-
allel and Distributed Computing, 43(1):37–45, 1997.

[16] C. M. Krishna and Y.-H. Lee. Voltage-clock-scaling adap-
tive scheduling techniques for low power in hard real-time
systems. In RTAS, pages 156–165, 2000.

[17] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal process-
ing. IEEE Trans. Comput., 36(1):24–35, 1987.

[18] Y.-H. Lu, L. Benini, and G. D. Micheli. Dynamic fre-
quency scaling with buffer insertion for mixed workloads.
IEEE Trans. on CAD of Integrated Circuits and Systems,
21(11):1284–1305, 2002.

[19] J. Luo and N. K. Jha. Power-conscious joint scheduling
of periodic task graphs and aperiodic tasks in distributed
real-time embedded systems. In ICCAD, pages 357–364.
IEEE Press, 2000.

[20] D. Lymberopoulos, B. Priyantha, and F. Zhao. mplat-
form: A reconfigurable architecture and efficient data shar-
ing mechanism for modular sensor nodes. In IPSN ’07,
2007.

[21] Y. Shin, K. Choi, and T. Sakurai. Power optimization
of Real-Time embedded systems on variable speed proces-
sors. In CAD, pages 365–368, 2000.

[22] T. Sivanthi and U. Killat. Global scheduling of periodic
tasks in a decentralized real-time control system. In IEEE
IWFCS. IEEE Press, 2004.

[23] K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: A
framework for composable semantic interpretation of sen-
sor data. In EWSN, pages 5–20, 2006.

[24] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. L.
Sangiovanni-Vincentelli. Extensible and scalable time trig-
gered scheduling. In ACSD, pages 132–141. IEEE Com-
puter Society, 2005.

[25] L. Zhong and H. Jha. Dynamic power optimization of
interactive systems. In 17th International Conference on
VLSI Design, pages 1041–1047, 2004.


