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Abstract

This paper describes two novel techniques,
information-driven sensor querying (IDSQ) and
constrained anisotropic diffusion routing (CADR),
for energy-efficient data querying and routing in
ad hoc sensor networks for a range of collabora-
tive signal processing tasks. The key idea is to
introduce an information utility measure to select
which sensors to query and to dynamically guide
data routing. This allows us to maximize infor-
mation gain while minimizing detection latency
and bandwidth consumption for tasks such as
localization and tracking. Our simulation results
have demonstrated that the information-driven
querying and routing techniques are more energy
efficient, have lower detection latency, and provide
anytime algorithms to mitigate risks of link/node
failures.

1 Introduction
Advances in wireless networking, microfabrication (e.g.
MEMS), and embedded microprocessors have enabled a
new generation of large sensor networks potentially appli-
cable to a range of tracking and identification problems in
both civilian and military applications. Examples include
human-aware environments, intelligent transportation grids,
factory condition-based monitoring and maintenance, and
battlefield situational awareness. With such advances come
new challenges for information processing which necessitate
the development of novel routing and collaborative signal
processing (CSP) algorithms to handle the distributed data
gathered by the network and process the information for the
given task.

Distributed sensor networks are characterized by limited
battery power, frequent node attrition, and variable data and
communication quality. To scale up to realistic tracking and
classification applications involving tens of thousands of sen-
sors, heterogeneous sensing modalities, multiple targets, and
non-uniform spatio-temporal scales, these systems have to
rely primarily on intelligent collaboration among distributed
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sensors to significantly improve tracking accuracy and reduce
detection latency.

Since sensors often must collaborate in order to perform
a given sensing task about the environment, determining the
utility of a remote sensor’s data is important in conserving
power due to the necessity of communication. Thus, the prob-
lem we are addressing in this paper is how to dynamically
query sensors and route data in a network so that information
gain is maximized while latency and bandwidth consumption
is minimized. Our approach relies on two key ideas: infor-
mation driven sensor querying (IDSQ) to optimize sensor se-
lection and constrained anisotropic diffusion routing (CADR)
to direct data routing and incrementally combine sensor mea-
surements so as to minimize an overall cost function. Dy-
namic sensor tasking and collaboration has the following ad-
vantages. It is key to the scalability of large-scale sensor net-
works through selective sensor tasking. It can drastically re-
duce latency in detection and tracking by application-aware
optimal routing. It enables progressive accuracy by incremen-
tal belief update. It ensures graceful degradation in perfor-
mance due to link failure or sensor attrition by providing any-
time algorithms.

Using information utility measures to optimize sensor se-
lection and incremental belief update to combine informa-
tion in a centralized system is not new (e.g., active test-
ing [Geman&Jedynak 1996] and Kalman filter), nor is cost-
based data routing in ad hoc networks (e.g., directed diffusion
routing [Intanagonwiwat et al. 2000]). What is new about
IDSQ/CADR is the use of a general form of information util-
ity that models the information content as well as the spatial
configuration of a network in a distributed way; with this for-
mulation, each node can evaluate an information/cost objec-
tive, make a decision, update its belief state, and route data
based on the local information/cost gradient and end-user re-
quirement. Existing approaches to sensor querying and data
routing for ad hoc heterogeneous sensor networks typically
employ a publish-subscribe scheme [Huang&Garcia-Molina
2001], where publishers advertise their data “attributes”, sub-
scribers submit “interests”, and an event brokering system
matches “interests” with “attributes”. The directed diffu-
sion [Intanagonwiwat et al. 2000] is one such example, where
the routing paths are established using the distance informa-
tion between neighboring nodes to minimize the number of
hops in RF communication. IDSQ/CADR can be considered



as a generalization of directed diffusion routing. We use both
information gain and communication cost to direct the data
diffusion, and hence can be more energy aware and efficient
than directed diffusion routing where typically only commu-
nication cost is of concern.

Our approach allows sensors to become activated when
there are “interesting” events to report, and only those parts
of the network with the most useful information balanced
by the communication cost need to be active. The type of
networks can be stealthy and is advantageous for security
reasons. The networks could also actively seek out infor-
mation, based on predictions of when and where “interest-
ing” events will be. An entire sensor network, with its in-
network processing power for processing, routing, and com-
bining distributed sensor data, is an extremely powerful dis-
tributed computing system. One notable feature of this dis-
tributed “supercomputer” is that its I/O is also distributed and
can match well with the impedance of the sensing application
domain by design.

The rest of the paper is structured as follows. Section 2
introduces a general formulation of the problem in terms of
an information utility measure and mentions issues of repre-
senting and incrementally updating the belief state. Section 3
presents the algorithms for information driven sensor query-
ing and constrained anisotropic diffusion routing. Section 4
describes experimental evidence and compares our approach
with existing work in uncertainty management and data diffu-
sion routing. Section 5 elaborates on other routing protocols
and issues of belief representation, and Section 6 discusses re-
lated work.

2 Problem Formulation
2.1 Sensing Model and Measure of Uncertainty
We will model our estimation problem using standard estima-
tion theory. The time-dependent measurement, zi(t), of sen-
sor i with characteristics, �i(t), is related to the parameters,
x(t), that we wish to estimate through the following observa-
tion (or measurement) model

zi(t) = h(x(t); �i(t)); (1)

where h is a (possibly non-linear) function depending on x(t)
and parameterized by �i(t), which represents the (possibly
time dependent) knowledge about sensor i. Typical character-
istics, �i(t), about sensor i include sensing modality, which
refers to what kind of sensor i is, sensor position xi, and
other parameters, such as the noise model of sensor i and node
power reserve. The reason for explicitly representing these
sensor characteristics is due to the distributed and heteroge-
neous nature of the sensor processing tasks.

In (1), we consider a general form of the observation model
that accounts for possibly non-linear relations between the
sensor type, sensor position, noise model, and the parameters
we wish to estimate. A special case of (1) would be

h(x(t); �i(t)) = fi(x(t)) +wi(t);

where fi is a (possibly non-linear) observation function, and
wi is additive, zero mean noise with known covariance.

In case fi is a linear function on the parameters, (1) reduces
to the linear equation

h(x(t); �i(t)) = Hi(t)x(t) +wi(t); (2)

In order to illustrate our technique, we will later consider
the problem of stationary target localization with stationary
sensor characteristics. Here, we assume that all sensors are
acoustic sensors measuring only the amplitude of the sound
signal so that the parameter vectorx = [x; y]T is the unknown
target position, and

�i =
�
xi; �

2
i

�T
; (3)

where xi is the known sensor position, and �2i is the known
additive noise variance. Note there is no longer a time depen-
dence for x and �i. Assuming that acoustic signals propagate
isotropically, the parameters are related to the measurements
by

zi =
a

kxi � xk
�

2

+wi (4)

where a is a given random variable representing the amplitude
of the target, � is a known attenuation coefficient, and k � k
is the Euclidean norm. wi is a zero mean Gaussian random
variable with variance �2i .

In the remainder of this paper, we define the belief as a rep-
resentation of the current a posteriori distribution of x given
measurements z1; : : : ; zN :

p(x j z1; : : : ; zN ) :

Typically, the expectation value of this distribution

�x =

Z
x p(x j z1; : : : ; zN ) dx

is considered the estimate (i.e., the minimum mean square es-
timate), and we approximate the residual uncertainty by the
covariance:

� =

Z
(x � �x)(x � �x)Tp(x j z1; : : : ; zN ) dx:

What standard estimation theory does not consider and is
of great importance to distributed sensor networks, however,
is that knowledge of the measurement value zi and sensor
characteristics �i normally resides only in sensor i. In order
to compute the belief based on measurements from several
sensors, we must pay a cost for communicating that informa-
tion. Thus, maintaining what information each sensor node
has about other sensor nodes is an important decision. This is
why the sensor characteristics �i(t) are explicitly represented
because it is important to know what information is available
for various information processing tasks.

Since incorporating measurements into the belief are now
assigned costs, the problem is to intelligently choose a sub-
set of sensor measurements which provide “good” informa-
tion for constructing a belief state as well as minimizing the
cost of having to communicate sensor measurements to a sin-
gle node. In order to choose sensors to provide “good” up-
dates to the belief state, it is necessary to introduce a measure
of the information a sensor measurement can provide to a be-
lief state. We will refer to this as the information content of a



particular sensor. The formalization of the criterion for select-
ing the next best sensor is the main contribution of this paper.
Section 2.2 will make this intuitive notion of information con-
tent mathematically rigorous, Section 2.3 will propose several
instances of information content measures that can be prac-
tically implemented, and Section 2.4 will combine the mea-
sures with communication costs to provide a composite utility
function.

2.2 Sensor Selection
In Section 2.1 we formulated the distributed sensing model.
Given the current belief state, we wish to incrementally up-
date the belief by incorporating measurements of previously
not considered sensors. However, among all available sen-
sors in the network, not all provide useful information that im-
proves the estimate. Furthermore, some information might be
useful, but redundant. The task is to select an optimal subset
and to decide on an optimal order of how to incorporate these
measurements into our belief update.

Figure 1 illustrates the basic idea of optimal sensor selec-
tion. The illustration is based upon the assumption that esti-
mation uncertainty can be approximated by a Gaussian distri-
bution, illustrated by uncertainty ellipsoids in the state space.
In both figures, the solid ellipsoid indicates the belief state at
time t, and the dashed ellipsoid is the incrementally updated
belief after incorporating an additional sensor at the next time
step. Although in both cases, a and b, the area of high uncer-
tainty is reduced by the same amount, the residual uncertainty
in case a maintains the largest principal axis of the distribu-
tion. If we were to decide between the two sensors, we might
favor case b over case a, based upon the underlying measure-
ment task.

It has to be emphasized that, due to the distributed nature
of the sensor network, this selection has to be done without
explicit knowledge of the measurement residing at each indi-
vidual sensor, in order to avoid communicating useless infor-
mation. Hence, the decision has to be made solely based upon
the sensor characteristics �i, and the predicted contributionof
these sensors.

Although details of the implementation depend on the net-
work architecture, the fundamental principles derived in this
section hold for both, the selection of a remote sensor by a
cluster head, as well as the decision of an individual sensor to
contribute its data and to respond to a query traveling through
the network. The task is to select the sensor that provides
the best information among all available sensors that have
not been incorporated. As will be shown in the experimen-
tal results, this provides a faster reduction in estimation un-
certainty, and usually incurs lower communication overhead
for meeting a given estimation error requirement, compared
to blind or nearest-neighbor sensor selection schemes.

To derive a mathematical formulation of the sensor selec-
tion process we assume there are N sensors labeled from 1 to
N and the corresponding measured values of the sensors are
fzig

N
i=1. Let U � f1; : : : ; Ng be the set of sensors whose

measurements have been incorporated into the belief. That is,
the current belief is

p(x j fzigi2U ) :

a b

Figure 1: Illustration of sensor selection criteria based upon
the information gain of individual sensor contributions. Here,
the information gain is measured by the reduction in the error
ellipsoid.

The sensor selection task is to choose a sensor which has not
been incorporated into the belief yet which provides the most
information. To be precise, let us define an information utility
function

 : P(Rd)!R

which acts on the class P(Rd) of all probability distributions
on Rd and returns a real number with d being the dimension
of x. The role of  is to assign a value to each element p 2
P(Rd) which indicates how spread out or uncertain the distri-
bution p is. Smaller values represent a more spread out distri-
bution while larger values represent a tighter distribution. We
will defer discussion of different choices of  to Section 2.3.

Incorporatinga measurement zj, where j =2 U , into the cur-
rent belief state p(x j fzigi2U) is accomplished by further
conditioningthe belief with the new measurement. Hence, the
new belief state is

p(x j fzigi2U [ fzjg) :

From estimation theory, this distribution can be computed
with knowledge of h, �i, and zj and some appropriate inde-
pendence assumptions. Incorporating a measurement zj has
the effect of mapping an element ofP(Rd) to another element
of P(Rd). Since  gives a measure of how “tight” a distri-
bution in P(Rd) is, it is clear that the best sensor ĵ 2 A =
f1; : : : ; Ng � U to choose is

ĵ = argj2Amax  (p (x j fzigi2U [ fzjg)) :

However, in practice, we only have knowledge of h and �i
to determine which sensor to choose. In other words, we
don’t know the measurement value zj before it is being sent.
Nevertheless, we wish to select the “most likely” best sensor.
Hence, it is necessary to marginalize out the particular value
of zj . Note that for any given value of zj for sensor j , we
get a particular value for  (�) acting on the new belief state
p(x j fzigi2U [ fzjg). Now, for each sensor j, consider the
set of all values of (�) for choices of zj . Here are some possi-
bilities for summarizing these set of values of (�) by a single
quantity:

Best average case:
ĵ = argj2AmaxEzj

[ (p(x j fzigi2U [ fzjg)) j fzigi2U ]

For a particular j, Ezj
[�] represents the average information

utility over the set of new belief states weighted by p(zj j

fzigi2U ). The sensor ĵ chosen is the one with best average
information utility.



Maximizing worst case:

ĵ = argj2Amaxmin
zj

 (p(x j fzigi2U [ fzjg))

In this case, for a particular j, we take the pessimistic view
that nature will present us with a measurement value zj that
would give us the worst possible information utility. Hence,
we are maximizing our worst suspicions.

Maximizing best case:

ĵ = argj2Amaxmax
zj

 (p(x j fzigi2U [ fzjg))

In this case, for a particular j, we take the optimistic view that
nature will provide us with a measurement value zj that would
give us the best possible information utility. Hence, we are
maximizing our most optimistic beliefs.

Section 2.3 will present some possibilities of the particular
form of the information utility (�).

2.3 Information Utility Measures
In order to quantify the information gain provided by a sensor
measurement, it is necessary to define a measure of informa-
tion utility. The intuition we would like to exploit is that in-
formation content is inversely related to the “size” of the high
probability uncertainty region of the estimate of x. This sec-
tion will define several such measures.

Covariance-Based
In the simplest case of a uni-modal posterior distribution that
can be approximated by a Gaussian, we can derive utilitymea-
sures based on the covariance � of the distribution pX(x).
The determinant det(�) is proportional to the volume of the
rectangular region enclosing the covariance ellipsoid. Hence,
the information utility function for this approximation can be
chosen as:

 (pX ) = � det(�) :

Although the volume of the high probability region seems
to be a useful measure, there are cases in which this measure is
underestimating the residual uncertainty. In case the smallest
principal axis shrinks to zero, the volume of the uncertainty
ellipsoid is zero, while the uncertainties along the remaining
principal axes might remain large.

An alternative measure using only the covariance � of a
distributionpX(x) would be the trace trace(�), which is pro-
portional to the circumference of the rectangular region en-
closing the covariance ellipsoid. Hence, the information util-
ity function would be

 (pX ) = �trace(�) :

Fischer Information Matrix
An alternative measure of information is the Fisher informa-
tion matrix F(x) defined over a class of likelihood densities
fp(zN1 j x)gx2S , where zN1 refers to the sequence z1; : : : ; zN
andx takes values from space S. The ijth component ofF(x)
is

Fij(x) =

Z
p(zN1 j x)

@

@xi
lnp(zN1 j x)

@

@xj
ln p(zN1 j x)dzN1

where xi is the ith component of x. The Cramer-Rao bound
states that the error covariance � of any unbiased estimator of
x satisfies

� � F
�1(x) :

It can be shown that Fisher information is related to the sur-
face area of the high probability region which is a notion of
the “size” of the region [Cover&Thomas 1991]. Similar to the
covariance-based measures, possible forms of the information
utility function using the Fisher information are

 (pX ) = det(F(x));

quantifying the inverse of the volume of high probability un-
certainty region, or

 (pX ) = trace(F(x)) :

However, calculation of the Fisher information matrix re-
quires explicit knowledge of the distribution. For the case
when a Gaussian distribution can approximate the posterior,
the Fisher information matrix is the inverse of the error co-
variance:

F = ��1:

If additionallythe Markov assumption for consecutive estima-
tion steps holds, we can incrementally update the parameter
estimate using a Kalman filter for linear models. In this case,
the Fisher information matrix can be updated recursively and
independent of measurement values using the Kalman equa-
tions [Mutambara 1998]:

F
(k) = F

(k�1) + (H(k))T (R(k))�1H(k); (5)

whereH(k) andR(k), are the observation matrix, (2), and the
measurement noise covariance at estimation step k, respec-
tively.

For nonlinear systems, a popular approach is to use the ex-
tended Kalman Filter, which is a linear estimator for nonlinear
systems, obtained by linearization of the nonlinear state and
observation equations. In this case, the information matrix F
can be recursively updated by [Mutambara 1998]:

F
(k) = F

(k�1) + (J(k))T (R(k))�1J(k) (6)

where J is the Jacobian of the measurement modelh(�) in (1).
The information gain can then be measured by the “size” of
this information matrix such as the determinant or trace.

Entropy of Estimation Uncertainty
If the distributionof the estimate is highly non-Gaussian (e.g.,
multi-modal), then the covariance � is a poor statistic of the
uncertainty. In this case, one possible utility measure is the
information-theoretic notion of information: the entropy of a
random variable. For a discrete random variableX takingval-
ues in a finite set S, the Shannon entropy is defined to be

H(X) = �
X
x2S

P (X = x) logP (X = x) :

For a continuous random variableX taking values in a con-
tinuous space S , the equivalent notion is the differential en-
tropy

h(X) = �

Z
S

pX (x) logpX (x)dx :



The entropy can be interpreted as the log of the vol-
ume of the set of typical values for random variable X
[Cover&Thomas 1991]. While this measure relates to the
volume of the high probability uncertainty region, the com-
putation of the entropy requires knowledge of the distribu-
tion pX (x) and can be computationally intensive for a gen-
eral pX(x). Note that entropy is a function of the distribution
only and not a function of the particular values that random
variable X takes. Furthermore, entropy is a measure of un-
certainty which is inversely proportional to our notion of in-
formation utility, and we can define the information utility as

 (pX ) = �H(P )

for discrete random variableX with probabilitymass function
P and

 (pX ) = �h(pX )

for a continuous random variable X with probability density
pX . Note that the notation for the entropy has been changed
above from the original definition to reflect the fact that en-
tropy is a function of distribution only.

Volume of High Probability Region
Another measure for non-Gaussian distributions could be the
volume of the high probability region �� of probability 
 2
(0; 1] defined to be

�� = fx 2 S : p(x) � �g

where � is chosen so that P (��) = 
. P is a probabil-
ity measure on S, and p(�) represents the corresponding den-
sity. The relation between this measure of the volume and
entropy is that entropy does not arbitrarily pick a value of 

[Cover&Thomas 1991]. The information utility function for
this approximation is

 (pX ) = �vol(��) :

Sensor Geometry Based Measures
In some cases, the utility of a sensor measurement is a func-
tion of the geometric location of the sensors only. For exam-
ple, if the signal model assumes the form (4), the contribution
of each individual sensor in terms of the likelihood function
is an annulus centered about the position of the sensor. If, at a
given time step, the current estimate of the target location is a
Gaussian with mean x̂ and covariance �, then intuitively, the
sensor along the longest principal axis of the covariance ellip-
soid provides better discrimination on the location of the tar-
get than those located along the shortest principal axis of the
uncertainty ellipsoid. This is due to the fact that each ampli-
tude measurement provides a distance constraint (in the shape
of the annulus) on the location of the target, and incorporating
that constraint amounts to intersecting the annulus with the el-
lipsoid. Hence, we would get less uncertainty about the posi-
tion of the target if the major axis of the ellipsoidwere perpen-
dicular to the tangent of the annulus. Furthermore, it is desir-
able that the sensor be closer to the mean of the current belief
which affects the thickness of the annulus due to the additive
nature of the noise term in (4).

In this special case, the geometric measure

 (pX ) = (xj � x̂)T��1(xj � x̂)

based on the Mahalanobis distance of the sensor under consid-
eration to the current position estimate is an appropriate util-
ity measure. The Mahalanobis distance measures the distance
to the center of the error ellipsoid, normalized by the covari-
ance �. By choosing the sensor j with the smallest Maha-
lanobis distance, we are incorporating the amplitude measure-
ment which we believe will provide the most reduction in the
uncertainty of the current belief.

Certainly, for other types of sensors, choosing the sensor
based on minimizing Mahalanobis distance is not appropriate.
For example, for sensors measuring bearing (e.g., by beam-
forming), the best sensor to choose is the sensor along the
shortest axis of the error ellipsoid when the bearing sensor is
pointing towards the ellipsoid.

2.4 Composite Objective Function
Up till now, we have ignored the communication cost of trans-
mitting information across the network, and we have also ig-
nored which sensor actually holds the current belief. In the re-
mainder of this paper we will refer to the sensor, l, which holds
the current belief, as the leader node. This node might act as
a relay station to the user, in which case the belief resides at
this node for an extended time interval, and all information
has to travel to this leader. In another scenario, the belief it-
self travels through the network, and nodes are dynamically
assigned as leaders. Depending on the network architecture
and the measurement task, both or a mixture of both cases can
be implemented. Without loss of generality, we assume that
the leader node temporarily holds the belief state and that in-
formation has to travel a certain distance through the network
to be incorporated into the belief state.

In order to incorporate the actual cost of information trans-
port, the objective function for sensor querying and routing is
a function of both information utility and cost of bandwidth
and latency. This can be expressed by a composite objective
function,Mc, of the form

Mc (�l; �j; p(x j fzigi2U )) = 
Mu (p(x j fzigi2U); �j)

� (1� 
)Ma (�l; �j) ; (7)

whereMu (p(x j fzigi2U ); �j) is one of the information util-
ity functions  defined in Section 2.2, and Ma measures the
cost of the bandwidth, and latency of communicating infor-
mation between sensor j and sensor l. The tradeoff parameter

 2 [0; 1] balances the contribution from the two terms in (7).
The objective is to maximize Mc by selecting a sensor j from
the remaining sensors A = f1; : : : ; Ng � U by

ĵ = argj2AmaxMc (�l; �j; p(x j fzigi2U ))

To illustrate this by an example, let us assume that the un-
certainty in the position estimate can be approximated by a
Gaussian probability distributionabout the estimated position
x̂, i.e., p(x j fzigi2U ) = N (x̂;�). As outlined above, an
appropriate information utility function at the sensor position
�j = xj is given by the Mahalanobis distance for amplitude
measuring sensors. If we impose an additional constraint on
the distance between the querying sensor (l) and the queried
sensor (j), the composite objective function comprises the fol-
lowing two terms:

Mu(xj ; x̂;�) = �(xj � x̂)
T��1(xj � x̂) (8)



Ma(xj ;xl) = (xj � xl)
T (xj � xl) (9)

where xl represents the position of the querying sensor l.

2.5 Representation and Incremental Update of
Belief State

Recall that the belief is defined as the posterior probability of
the random variable x 2 Rd given the measurements z1, z2,
..., zn. Assuming densities exist, this is p(xjz1; :::; zn).

Let us assume that a priori, x is uniformly distributed over
some compact subset S � Rd, and zi are conditionally in-
dependent with respect to x. Then, the likelihood can be fac-
tored as

p(z1; :::; znjx) =
Y
i

p(zijx)

And the belief is equivalent to the likelihood up to some
multiplicative constant c1:

p(xjz1; :::; zn) = c0p(z1; :::; znjx)p(x)

= c1p(z1; :::; znjx)

= c1

Y
i

p(zijx)

where c0 is a normalizing constant and the second equality fol-
lows from the fact that x is uniformly distributed in S. Due
to this equivalence by the assumptions above, we can use the
term belief and likelihood interchangeably. Since it is diffi-
cult to represent the exact belief when the belief is some arbi-
trary density, it is necessary to approximate the belief. Since
the belief needs to be communicated to remote sensors in cer-
tain scenarios, a compact representation is desirable. Details
of the tradeoffs between parametric and nonparametric repre-
sentations will be postponed until Section 5.

Another desirable characteristic of the representation of the
belief is if the representation can be incrementally updated.
Under the assumptions above, the belief

p(x j z1; : : : ; zn)

can be computed from the previous belief p(x j z1; : : : ; zn�1)
and the new measurement zn by

p(x j z1; : : : ; zn) = c2p(zn j x)p(x j z1; : : : ; zn�1)

where c2 is a normalizing constant.
For the special case of a linear system with Gaussian distur-

bances, the well-known Kalman filter is an algorithm which
incrementally computes the mean and covariance of the es-
timate. Since it is known that the estimate is Gaussian, the
filter computes the optimal estimates. For nonlinear systems,
the extended Kalman filter has been successfully applied. An-
other incremental algorithm is the sequential Monte Carlo
method (also known as particle filter or condensation algo-
rithm) [Doucet et al. 2000]. Without getting into the details
of these incremental techniques, the point is that such incre-
mental update mechanisms are desirable in order to easily fuse
new measurements with the current belief. Furthermore, in
order to pass the belief around easily, it is desirable that the
representation of the belief be a compact one.

3 Algorithms
We describe two classes of algorithms, one based on the fixed
belief carrier protocol in which a designated node such as a
cluster leader holds the belief state, and another based on the
dynamic belief carrier protocol in which the belief is succes-
sively handed off to sensor nodes closest to locations where
“useful” sensor data are being generated. In the first case, the
querying node selects optimal sensors to request data from
using the information utility measures. For example, using
the Mahalanobis distance measure, the querying node can de-
termine which node can provide the most useful information
while balancing the energy cost, without the need to have the
sensor data first. In the dynamic case, the current sensor node
updates the belief with its measurement and sends the estima-
tion to the next neighbor that it determines can best improve
the estimation. Although the algorithms presented here as-
sume there is a single belief carrier node active at a time, the
basic ideas also apply to scenarios where multiple belief car-
riers can be active simultaneously.

3.1 Information-Driven Sensor Query
This section outlines a sensor selection algorithm based on
the cluster leader type of distributed processing protocol. Al-
though the algorithm is presented using the cluster leader
protocol, the ideas of guiding sensor selection using an
information-driven criterion can be equally well supported by
other methods such as the directed diffusion routing. The de-
scription of the algorithm below will explicitly discuss what
information each sensor node has, even though this part of the
algorithm is auxiliary to the sensor selection aspect of the al-
gorithm. Assume we have a cluster ofN sensors each labelled
by a unique integer in f1; : : : ; Ng. A priori, each sensor i
only has knowledge of its own position xi 2 R2. Figure 2
shows the flowchart of this algorithm which is identical for
every sensor in the cluster. The algorithm works as follows:

1 Initialization Assuming all sensors are synchronized so
that they are running the initializationroutine at the same
time, the first computation is to pick a leader from the
cluster of N sensors. Depending on how the leader is
determined, the sensors will have to communicate infor-
mation about their position. For example, [Gao et al.
2001] describes a clustering algorithm with mobile cen-
ters. Leaving out the details of this leader selection, let us
assume the sensor node labelled l is the leader. Assume
also that the leader node has knowledge of certain char-
acteristics f�igNi=1 of the sensors in the network such as
the positions of the sensor nodes.

2a Follower Nodes If the sensor node is not the leader, then
the algorithm follows the left branch in Figure 2. These
nodes will wait for the leader node to query them, and
if they are queried, they will process their measurements
and transmit the queried information back to the leader.

2b Initial Sensor Reading If the sensor node is the leader,
then the algorithm follows the right branch in Figure 2.
When a target is present in the range of the sensor clus-
ter, the cluster leader will become activated (e.g. the am-
plitude reading at the leader node is greater than some
threshold). The leader node will then



1. calculate a representation of the belief state with its
own measurement, p(x j zl), and

2. begin to keep track of which sensors’ measurements
have been incorporated into the belief state, U =
flg � f1; : : : ; Ng.

Again, it is assumed that the leader node has knowledge
of the characteristics f�igNi=1 of all the sensors within the
cluster.

3 Belief Quality Test If the belief is good enough, based on
some measure of goodness, the leader node is finished
processing. Otherwise, it will continue with sensor se-
lection.

4 Sensor Selection Based on the belief state, p(x j fzigi2U ),
and sensor characteristics, f�igNi=1, pick a sensor node
from f1; : : : ; Ng � U which satisfies some information
criterion  (�). Say that node is j. Then, the leader will
send a request for sensor j’s measurement, and when the
leader receives the requested information, it will

1. update the belief state withzj to get a representation
of

p(x j fzigi2U [ zj) ; and

2. add j to the set of sensors whose measurements
have already been incorporated

U := U [ fjg :

Now, go back to step 3 until the belief state is good
enough.

At the end of this algorithm, the leader node contains all the
information about the belief from the sensor nodes by intelli-
gently querying a subset of the nodes which provide the ma-
jority of the information. This reduces unnecessary power
consumption by transmittingonly the most useful information
to the leader node. This computation can be thought of as a lo-
cal computation for this cluster. The belief stored by the leader
can then be passed up for processing at higher levels.

Note that this algorithm contains the general ideas dis-
cussed earlier in this paper. In steps 2b and 4, some repre-
sentation of the belief p(x j fzigi2U ) is stored at the leader
node. Considerations for the particular representation of the
belief was mentioned in Section 2.5 and is discussed in detail
in Section 5. In step 4, an information criterion is used to se-
lect the next sensor. Different measures of information utility
were discussed in Section 2.3, each with their own computa-
tional complexity issues and notions of information content.

3.2 Constrained Anisotropic Diffusion Routing

While the Information-Driven Sensor Query algorithm pro-
vides us with a way of selecting the optimal order of sensors
to provide maximum incremental informationgain, it does not
specifically define how both, the query and the information,
are routed between the querying and the queried sensor. This
section outlines a number of algorithms that exploit the com-
posite objective function to dynamically determine the opti-
mal routing path.
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Figure 2: Flowchart of the information-driven sensor query-
ing algorithm for each sensor.

Global knowledge of sensor positions
If the querying sensor has global knowledge of all sensor po-
sitions in the network, the routing can be directly addressed to
the sensor closest to the optimal position. The optimal posi-
tionxo can be computed by the querying sensor by evaluating
the composite objective function,Mc:

xo = arg
x
[rMc = 0] : (10)

If the underlying routing protocol layer supports absolute sen-
sor addresses, the querying sensor can directly request infor-
mation from the sensor located closest to the optimum posi-
tion.

Routing without global knowledge of sensor positions
Here the information query is directed by local decisions of
individual sensor nodes and guided into regions satisfying the
constraints defined byMc. Note thatMc is incrementally up-
dated as the belief is updated along the routing path. The local
decisions can be based upon different criteria:

1. For each sensor located at xk, evaluate the objective
functionMc at the positions of them sensors within a lo-
cal neighborhood determined by the communication dis-
tance, and pick the sensor j that maximizes the objective
function locally within the neighborhood:

ĵ = argj max(Mc(xj)); 8j 6= k



where xk is the position of the current routing node.

2. Choose the next routingsensor in the direction of the gra-
dient of the objective function,rMc. Among all sensors
within the local communication neighborhood, choose
the sensor j such that

ĵ = argjmax

 
(rMc)

T (xk � xj)

jrMcj jxk � xj j

!
;

where xk denotes the position of the current routing
node.

3. Instead of following the local gradients of the objective
function throughout the routing path, the chosen direc-
tion at any hop can be biased towards the direction aim-
ing at the optimum position, xo. This variation of the
gradient ascent algorithm is most useful in regions of
small gradients of the objective function, i.e., where the
objective function is flat. The direction towards the min-
imum of the objective function can be found by evaluat-
ing (10) at any routing step. This allows to locally com-
puting the direction towards the optimum position, i.e.,
(xo � xk), where xk denotes the position of the current
routing sensor. The optimal direction towards the next
sensor can be chosen according to a weighted average of
the gradient of the objective function and the direct con-
nection between the current sensor and the optimum po-
sition:

d = �rMc + (1� �) (xo � xj) ;

where the parameter � can be chosen, for example, as a
function of the distance between the current and the op-
timum sensor position: � = � (jxo � xjj). This routing
mechanism allows adapting the routing direction to the
distance from the optimum position. For large distances
it might be better to follow the gradient of the objective
function for the steepest ascent, i.e., the fastest informa-
tion gain. For small distances about the optimum posi-
tion, the objective function is flat and it is faster to di-
rectly go towards the minimum than following the gra-
dient ascent.

In order to locally evaluate the objective function and its
derivatives, the query needs to be transmitted together with in-
formation on the current belief state. This information should
be a compact representation of the current estimate and its un-
certainty, and has to provide complete information to incre-
mentally update the belief state given local sensor measure-
ments. For the above example of quantifying the information
utility by the Mahalanobis distance, we need to transmit the
triplet fx̂;xq; �̂g with the query, where x̂ is the current state
of the estimated target position,xq is the positionof the query-
ing sensor, and �̂ is the current estimate of the position uncer-
tainty covariance.

In-network processing
The above-mentioned routing mechanisms can be used to es-
tablish a routingpath towards the potentiallybest sensor along
which the measurement from the sensor closest to the optimal
position is shipped back. In the case of global knowledge of

sensor positions, the routing path is optimal. In the case of lo-
cal sensor knowledge, the path is only locally optimal as the
routing algorithm is a greedy algorithm. The estimate and the
estimation uncertainty can be dynamically updated along the
routing path. The measurement can also be shipped back to
the query originating node. Since the information utility ob-
jective function along the path is monotonically increasing,
the information provided by subsequent sensors is getting in-
crementally better towards the global optimum. When the in-
formation is continuously shipped back to the querying sen-
sor, the information arriving in sequential order provides an
incremental improvement to the estimate. Once predefined
estimation accuracy is reached, the querying sensor can termi-
nate the query even if it has not yet reached the optimal sensor
position. Alternatively, instead of shipping information back
to the querying sensor, the result could be read out from the
network at the sensor where the information resides.

Incorporate target dynamics into query
For moving targets, during the local dynamic update of the be-
lieve state and the objective function, a model on the target dy-
namics can be used to predict the position of the target in the
next time step. This predicted target position and the associ-
ated uncertainty can be used to dynamically aim the informa-
tion directed query at future positions to optimally track the
target.

4 Experimental Results
This section describes two sets of experiments aimed at vali-
dating the IDSQ and CARD algorithms presented earlier.

4.1 Information-Driven Sensor Querying (IDSQ)
We will apply the sensor selection algorithm presented in the
Section 3.1 to the problem of spatial localization of a station-
ary target based on amplitude measurements from a network
of sensors.

The measurement model for each sensor i is

zi =
a

kx� xik
�

2

+wi (11)

for i = 1; : : : ; N where

a 2 R is the amplitude of the target uniformly distributed in
the interval [alow; ahigh],

x 2 R2 is the unknown target position,

xi 2 R
2 is the known sensor position,

� 2 R is the known attenuation coefficient, and

wi is white, zero-mean Gaussian noise with variance �2i .

The purpose of these experiments is to compare different sen-
sor selection criteria. Issues of compactly representing the be-
lief state will be postponed to Section 5.3. The representation
� of the belief will be the history of the collected measure-
ments from the sensors. Thus, the true belief p(x j �) and
any statistics thereof can be calculated.

Let us fill in the details of the algorithm presented in Sec-
tion 3.1.



1 Initialization The relevant characteristics of each sensor i
are

�i =

�
xi

�2i

�

where xi is the position and �2i is the variance of the ad-
ditive noise term. For simplicity, the leader is chosen to
be the one whose positionxi is closest to the centroid of
the sensors, that is,

l = argj=1;:::;N minkxj �
1

N

NX
i=1

xik :

To determine the leader, all sensors communicate their
characteristics �i to each other.

2a Follower Nodes When a follower node i is queried by the
leader, it will transmit zi to the leader.

2b Initial Sensor Reading For the experiments, the leader
node lwas activated when its amplitude reading satisfied

zl > 
 :

This essentially means the leader node becomes acti-
vated when the target is less than some given distance
away from the leader node, assuming there is no other
sound source present. The leader will then

1. store its amplitude value � = zl, which is its repre-
sentation of the belief, and

2. keep track of which sensors’ measurements have
been incorporated into the belief state,

U = flg :

3 Belief Quality Test In the general case, a test to determine
when the quality of the belief is good enough is needed
here; however, for the purposes of the experiments, we
will continue to incorporate measurements until all sen-
sors in the cluster have been incorporated. All clusters in
the experiments consist of 7 sensors.

4 Sensor Selection The informationwhich is utilized to com-
pute the next sensor to query is the belief state � and sen-
sor characteristics f�igNi=1. We have four different crite-
ria for choosing the next sensor ĵ:

A Nearest Neighbor Data Diffusion

ĵ = argj2f1;:::;Ng�U minkxl � xjk

B Mahalanobis distance First, calculate the mean and
covariance of the belief state:

� =

Z
xp(x j �)dx

� =

Z
(x � �)(x � �)T p(x j �)dx

and choose by

ĵ = argj2f1;:::;Ng�U min(xj � �)
T��1(xj � �) :

C Maximum likelihood This is an ad hoc generaliza-
tion of the Mahalanobis distance criterion for dis-
tributions that are multi-modal. For the special case
when the true distribution is Gaussian, this criterion
corresponds exactly with the Mahalanobis distance
criterion.

ĵ = argj2f1;:::;Ng�U maxp(xj j �) :

D Best Feasible Region This is an uncomputable
method since this requires knowledge of the sensor
value in order to determine the sensor to use.
However, this has been implemented to serve as a
basis for comparison of the other criteria.

ĵ = argj2f1;:::;Ng�U min

Z
��

dx

where

�� = fx 2 R2 : 9fwi = nigi2U withrP
i2U

n2
i

�2
i

� � s:t:

8i 2 U 9a 2 [alow ; ahigh] with
zi =

a

kx�xik
�

2

+ nig

:

Viewing the wi’s as a vector of independent normal
variables with standard deviation �i, � is the stan-
dard deviation of this multivariate random variable.
� then controls the maximum energy of the noise in-
stances. The set of x 2 �� is the set of target posi-
tions which could have generated the measurements
fzigi2U

After node ĵ has been determined, a request transmitted
to node ĵ, and zj received, the leader node will

1. update the representation of the belief state1

� := � � z
ĵ
; and

2. update the set of used sensors

U := U [ fĵg :

For the simulations, we have chosen alow = 10 and
ahigh = 50. The sensor variance �i is set to 0:1, which is
about 10% of the signal amplitude when the amplitude of the
target is 30 and the target is at a distance of 30 units from the
sensor. � is chosen to be 2 since this value covers 99% of all
possible noise instances. For the first simulation, � was set
to 1:6 which considers reflections from the ground surface. �
is set to 2 for the second simulation which is the attenuation
exponent in free space with no reflections or absorption. The
shape of uncertainty region is sensitive to different choices of
�; however, the comparative performance of the sensor selec-
tion algorithm for different selection criteria generally behave
similarly for different �.

1Note that here we use the string concatenation operator as a
shorthand to denote the belief update without getting into details of
specific update algorithms. More discussion on this can be found
later in Section5.



The first simulation is a pedagogical example to illustrate
the usefulness of incorporating a sensor selection algorithm
into the sensor network. Figure 3 shows the layout of 14 mi-
crophones, 13 of which are in a linear array and one which is
perpendicularly off from the leader node of the linear array.
The one microphone not in the linear array is placed so that
it is farther from the leader node than the farthest microphone
in the linear array. With sensor measurements generated by a
stationary object in the middle of the sensor network, sensor
selection criteria A and B are compared. The difference in the
two runs is the order in which the sensors’ measurements are
incorporated into the belief.

Figure 4 shows a plot of the number of sensors incorporated
versus the logarithm of the determinant of the error covariance
of the belief state. Indeed, the volume of the error covariance
under selection criterion B is less than the volume of the error
covariance under selection criterion A for the same number of
sensors, except during the initial phase or after all the sensors
have been accounted for.

A plot of the amount of the communication distance versus
the number of sensors incorporated is shown in Figure 5. Cer-
tainly, the curve for selection criterion A is the lower bound
for any other criterion. A optimizes the network to use the
minimum amount of communication energy when incorporat-
ing sensor information; however, it largely ignores the infor-
mation content of these sensors. A more informative interpre-
tation of the figure is to compare the amount of energy it takes
for criterion A and criterion B to achieve the same level of ac-
curacy. Examining Figure 6, we see that under criterion A,
in order for the log determinant of the covariance value to be
less than 5, criterion A requires all 14 sensors to be tasked.
On the other hand, criterion B requires only 6 sensors to be
tasked. Now, comparing the total communication distance for
this level of accuracy from Figure 7, we see that criterionB re-
quires less than 150 units of communication distance for task-
ing6 sensors as opposed to nearly 500 unitsof communication
distance for tasking all 14 sensors. Indeed, for a given level
of accuracy, B generally requires less communication distance
than A. With this comparison, criterion B performs better.

The above simulation was the run of a specific layout of the
sensors, and the striking improvement of the error was largely
due to the fact that most of the sensors were in a linear array.
Thus, the next simulation will explore which one does better
on the average with randomly placed sensors.

Microphones are placed uniformly in a given square region
as shown in Figure 8 . The target is placed in the middle of
the square region and given a random amplitude. Then, the
sensor algorithm for the different sensor selection criteria de-
scribed above was run for 200 runs. Figure 9 shows a com-
parison between selection criterion A and B. There are three
segment in each bar. The bottom segment represents the per-
centage of runs when the error for B was strictly less than the
error for A after k sensors have been incorporated. The middle
represents a tie. The upper segment represents the percentage
of runs when the error for B was larger than the error for A.
Since the bottom segment is larger than the upper one (except
for the initial and final cases), this shows B performs better
than A on average.

Figure 10 and Figure 11 show comparisons of sensor crite-
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Figure 3: Layout of all-but-one-colinear sensors (squares) and
target (asterisk). The leader node is denoted by an �.

rion C and D versus B. The performance of C is comparable
to B, and as expected, D is better than B. The reason D is not
always better than B is because the nth best sensor is chosen
incrementally with the first n � 1 sensors fixed from before.
Fixing the previous n�1 sensors when choosing the nth sen-
sor is certainly suboptimal to choosing n sensors all at once to
maximize the information content of the belief.

4.2 Constrained Anisotropic Diffusion Routing
(CADR)

Figure 12 illustrates the idea of Constrained Anisotropic Dif-
fusion Routing (CADR) by numerical simulations of ad hoc
sensor networks of randomly placed sensors. The objective
function was chosen according to (7), with the information
utility and energy cost terms according to (8) and (9), respec-
tively. The current target position, x̂, and its uncertainty, �,
were arbitrarily chosen and remained fixed for the run, i.e., no
incremental update of the belief state has been implemented.
The value of the objective function across the sensor network
is shown as a contour plot with peaks of the objective function
located at the center of ellipses. The circle indicated by ’?’
depicts the position of the querying sensor (query origin), and
the circle indicated by ’T’ depicts the estimated target posi-
tion, x̂. The current uncertainty in the position estimate, �, is
depicted as 90-percentile ellipsoid enclosing the position ’T’.

The goal of the Constrained Anisotropic Diffusion Routing
is to guide the query as close as possible towards the maxi-
mum of the objective function, following the local gradients
to maximize incremental information gain. While the case of

 = 1 represents maximum information gain, ignoring the
distance from the querying sensor (and hence the energy cost),
the case 
 = 0 minimizes the energy cost, ignoring the infor-
mation gain. For other choices of 0 < 
 < 1, the composite
objective function represents a tradeoff between information
gain and energy cost.
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Figure 4: Determinant of the error covariance for selection
criteria A and B (IDSQ) for the all-but-one-colinear sensor
layout.
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Figure 5: Total communication distance vs. the number of
sensors queried for selection criteria A and B (IDSQ) for the
all-but-one-colinear sensor layout.
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Figure 6: Determinant of the error covariance for selection
criteria A and B (IDSQ) for the all-but-one-colinear sensor
layout. A tasks 14 sensors while B tasks 6 sensors to be below
an error threshold of 5 units.
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Figure 7: Total communication distance vs. the number of
sensors queried for selection criteria A and B (IDSQ) for the
all-but-one-colinear sensor layout. For achieving the same
threshold of the error, A tasks 14 sensors and uses nearly 500
units of communication distance whereas B tasks 6 sensors
and uses less than 150 units of communication distance.
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Figure 8: Layout of seven randomly placed sensors (squares)
with target in the middle (asterisk).
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Figure 9: Percentage of runs where B performs better than A
for seven randomly placed sensors.
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Figure 10: Percentage of runs where B performs better than C
for seven randomly placed sensors.
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Figure 11: Percentage of runs where B performs better than D
for seven randomly placed sensors.



Figure 12 shows how variation of the tradeoff parameter 

morphs the shape of the objective function. As 
 decreases
from 1 to 0, the peak location moves from being centered at
the predicted target position (
 = 1) to the position of the
querying sensor (
 = 0); at the same time, the contours change
from being elongated, shaped according to the uncertainty el-
lipsoid represented by the estimated covariance �, towards
isotropic. Another interesting aspect of the combined objec-
tive function is that the spatial position of its minimum does
not shift linearly between the estimated target position ’T’ and
the query origin ’?’, with varying 
. This can be observed in
the case of 
 = 0:2, where the minimum is located off the line
connecting ’T’ and ’?’.

In all three cases shown in Figure 12 the estimated target
position and residual uncertainty are the same. Variations in
shape and offset of the objective function are caused by varia-
tions of the tradeoff parameter 
. In order to visualize how the
query is routed towards the maximum of the objective func-
tion by local decisions, both the estimated position x̂ as well
as its uncertainty �, are left unaltered during the routing. It
is important to note that incremental belief update during the
routing by in-network processing would dynamically change
both the shape and the offset of the objective function accord-
ing to the updated values of x̂ and � at every node along the
routing path. As the updated values of x̂ and � are passed on
to the next node, all routing decisions are still made locally.
Hence, the plotted objective function represents a snapshot of
the objective function that an active routing node locally eval-
uates at a given time step, as opposed to the overlaid routing
path which illustrates the temporal evolution of the multi-hop
routing.

The routing in Figure 12 was terminated after reaching a
spatial region where the value of the objective function is
above a preset threshold. In real applications, the termination
criterion can be chosen based upon other criteria, such as a
threshold on the residual uncertainty or preset timeouts that
are passed along with the query.

The small circles surrounding the dots along the routing
path illustrate the subset of sensors the routing sensors (on the
path) consider during sensor selection. Among these sensors
the ones that locally maximize the objective function have
been selected as the next routing nodes. The fraction of se-
lected nodes among all nodes indicates the energy savings by
using CADR, as opposed to the total energy cost of flooding
the network.

5 Discussion
This section addresses several issues concerning practical im-
plementations of the IDSQ/CADR algorithms.

5.1 Other Network Routing Support for
IDSQ/CADR

We have described how CADR can effectively support intel-
ligent sensor querying such as IDSQ. Existing data diffusion
protocols such as [Intanagonwiwat et al. 2000] could be used
to implement IDSQ/CADR. For simplicity, we will continue
to use the localization of a single stationary target as an exam-
ple.

1   T

   ?

1   T

   ?

1   T

   ?

Figure 12: Constrained Anisotropic Diffusion Routing for
N = 200 sensors, and varying information vs. cost tradeoff
parameter 
. From top to bottom: 
 = 1, 
 = 0:2, 
 = 0:0.
For comparison, the position estimate of the target, ’T’, and
the position of the query origin, ’?’, are fixed in all examples.



As described earlier, in a cluster based network organiza-
tion a user query enters into the network at the node called
query proxy, often the cluster head itself. The proxy performs
estimation of target states, using information from its sensors
as well as sensors from the nodes in the cluster. If a target
moves out of the range of the sensors in the cluster, then a
hand-off needs to take place so as to get the current state es-
timation to the next cluster where the target is mostly likely
going to be at.

Using the information utility measure such as the Maha-
lanobis distance described earlier, the query proxy selects a
node in the cluster that can best improve the current belief
state. Since the computation of Mahalanobis distance only re-
quires the knowledge of the current belief state and the loca-
tion of a sensor, this can be accomplished at the proxy node
if the node has location information for all the sensors in the
cluster. To request the data from the selected sensor, the proxy
can perform a point-to-pointcommunication using the address
of the selected sensor node, or the proxy can turn on only the
selected node (and when a node is turned on it sends measure-
ment back to the proxy by default).

In the more general case, the node selection must be based
on three pieces of information: belief state (e.g., mean, covari-
ance for a Gaussian distribution), sensor location, and mea-
surement at the sensor. We exploit the filter mechanism avail-
able in the directed diffusion routing protocol. Each node has
a filter that acts on information it receives from a neighbor as
well as its own measurement signal and decides to either send
back the signal (traversing the information diffusion routes
back to the proxy via callbacks), or change the data routing
gradients it has already set up, or forward the information it
receives to a chosen next node.

In one scenario, the query proxy broadcasts its current be-
lief state to all nodes within its influence region. Some nodes
may require more than a single hop to reach, using for ex-
ample an underlying diffusion routing tree. There are two
cases in which the sensor selection can be accomplished in-
network: (1) Each sensor node that receives the broadcasted
belief state computes a quality factor r indicatinghow well the
current measurement can improve the current estimate using
measures such as volume of error covariance, and those that
meet certain threshold sends their data back. For example, ev-
ery node that can reduce the estimate uncertainty by 50% or
more sends data back to the proxy. (2) Each node sends a tu-
ple fdata, rg back to the proxy, traversing the diffusion rout-
ing tree. At each junction of the tree where multiple messages
collide, only the message with max r gets forwarded to the
next node. This way the query proxy receives only the best
measurement. Alternatively, in both (1) and (2), in addition
to in-network sensor selection, the estimation can be accom-
plished in-network. For example, using the independent like-
lihood pool principle [Manyika&Durrant-Whyte] (assuming
conditioned on target location and amplitude), then local esti-
mates can be combined incrementally when signals flow back
to the proxy. However, this has to balance with the amount
of information to transmit since in some cases the encoding
of the belief state might take more bits than the measurement
itself (e.g. in the non-parametric form).

5.2 Belief Representation
There are several ways to approximate an arbitrary belief
state:

1. Approximate by a family of distributionsM � P(Rd),
which is parameterizable by a finite dimensional param-
eter � 2 �, where P(Rd)is the set of all probability
distributions over Rd. An example of M is the family
of Gaussian distributions on Rd where the finite dimen-
sional parameter space � includes the mean and covari-
ance of the Gaussian distributions.

2. Approximate by point samples. This is a brute force
method of approximating the density of a continuous ran-
dom variable by a probabilitymass function with support
in a finite number of points of S. Let ~S � S be some
finite set of points of S. Then, we can approximate the
density by a PMF with mass at each point of ~S propor-
tional to the density at that point. Two examples of this
approximation are discretizing the subset of S by a grid
and the particle filter approximation of distributions. A
variant of this point sample approximation is to partition
S and assign a probability value to each region; this is a
histogram type approach.

We should mention that the first approximation is referred
to as a parametric approximation whereas the second approx-
imation is referred to as a nonparametric approximation. Al-
though the terms parametric and nonparametric may seem to
refer to two completely different ways of approximation, we
would like to point out that the distinction is not so clear. In
the second case, if we consider the points of ~S with their as-
sociated probability value as the set of all parameters �, then
we can consider the second approximation a parametric ap-
proach as well. The distinction between a parametric approx-
imation and a nonparametric one depends on what we mean
by the term “parameter”.

5.3 Impact of Choice of Representation
The representation of the belief will impact the amount of
communication power consumed when sending the belief
state to a remote sensor. If we must pass the belief to a remote
sensor, we are faced with the following tradeoff:

1. Representing the true belief by a nonparametric approx-
imation will result in a more accurate approximation of
the belief at the cost of more transmitted bits.

2. Representing the true belief by a parametric approxi-
mation with relatively few parameters will result in a
poor approximation of the belief but with the benefit that
fewer bits need to be transmitted.

The above two tradeoffs are general statements. However,
there is another factor that is underlying the tradeoffs above.
That factor is background knowledge of the possible set of be-
liefs. Let us elaborate.

Parametric case (e.g. Gaussian approximation)
The reason we are able to transmit relatively few bits under the
parametric case is that it is assumed that all sensors are aware
of the parametric class of beliefs. Knowledge of this paramet-
ric class is the background knowledge which allows for the



small number of bits to be transmitted. In the case where we
approximate the belief by a Gaussian, all sensors know that
the belief is represented by the parametric class of Gaussian
distributions. Hence, only the mean and covariance need to be
transmitted. The Kalman filter equations are recursive update
equations of the mean and covariance of the Gaussian distri-
bution.

Nonparametric case (e.g. discretization)
For the nonparametric case, there is no constant-size param-
eterization of the belief in general. However, assuming that
the model of the measurements is known, we can parameter-
ize the belief by storing a history of all measurements. In this
case, the parameter space is � = R� =

S1

n=1R
n, the set of

all finite length strings of real numbers. If �m = z1z2 : : : zm
is the parameter for the likelihood function

p(z1; : : : ; zm j x) ;

then the parameter �m+1 = z1z2 : : : zmzm+1 for

p(z1; : : : ; zm+1 j x)

is updated from �m by

�m+1 = �m � zm+1

where “�” denotes string concatenation. This update equation
is trivial and suffers from increasing dimensionality. But if we
are given knowledge of a highly nonlinear model for the mea-
surements of the unknown variable, it may be that collecting
a history of the measurements is a more compact representa-
tion initially. To elaborate, a Gaussian approximation of the
likelihood function

p(z1; z2 j x)

would require storing the mean and the covariance which for
this particular case would require 2 real numbers for the mean
and 3 real numbers for the covariance for a total of 5 real num-
bers. However, to store the exact likelihood, we only require
2 real numbers corresponding to z1 and z2, with the implicit
background knowledge of the form of the likelihood function.

If, for example, it turns out that after some number of mea-
surements, the true likelihood function becomes unimodal
and, hence, can be approximated well by a Gaussian, this mo-
tivates a hybrid representation:

1. Initially, the belief is parameterized by a history of mea-
surements.

2. Once the belief begins to look unimodal, we will approx-
imate the belief by a Gaussian and, hence, the parameter-
ization of the belief includes the mean and covariance.

Since a Gaussian approximation is poor initially, the cost of
maintaining a history of measurements is justified. Once the
Gaussian approximation becomes reasonable, we can convert
to such a representation and control the parameter dimension-
ality.

6 Related Work
Researchers in robotics have developed a number of algo-
rithms for quantifying and estimating uncertainties in sensing
and estimation applications. In particular, [Nakamura 1992]

uses a geometric characterization of uncertainty in terms of
error ellipsoids and developed a Kalman-filter like incremen-
tal estimation algorithm, assuming Gaussian distributions, for
minimizing the uncertainty ellipsoids for a robotic positiones-
timation problem. [Manyika&Durrant-Whyte] and [Mutam-
bara 1998] developed a general information filter formulation
for the incremental estimation problem, similar to the Kalman
filter. IDSQ differs from these in that IDSQ uses a set of in-
formation criteria to select which sensors to get data from and
then incrementally combine the data. The belief update in
IDSQ could use either an information filter or a more general
non-Gaussian technique such as the sequential Monte Carlo
method (also known as particle filter) [Doucet et al. 2000].

IDSQ is related to work on active vision or active test-
ing in computer vision research. [Geman&Jedynak 1996] de-
scribed a method for selecting tests using an entropy measure
on the current set of hypotheses for a satellite image based
road tracking problem. In their method, a test is selected if
it minimizes the residual uncertainty about the location of the
road, using an online implementation of a decision tree algo-
rithm. While sharing the same philosophy of minimizing un-
certainty in an estimation via active test selection, IDSQ mod-
els the uncertainty in a geometric sense so that active sensor
selection can be guided using the spatial configuration of the
sensors.

Distributed Kalman filter exploits the fact that measure-
ments are incorporated into the estimate by a weighted lin-
ear combination of estimate and measurement [Mutambara
1998]. Hence, estimates based on different clusters of mea-
surements can be combined linearly to create an estimate
based on all the measurements. CADR works based on this in-
cremental nature of incorporating measurements into the esti-
mate, but unlike the distributed Kalman filter, CADR discrim-
inates between useful measurements and redundant measure-
ments to minimize unnecessary communication costs.

Wirelessly networked sensors often deploy a multihop RF
communication strategy to conserve energy [Pottie&Kaiser
2000]. Recent work in data diffusion routing and more
generally energy-aware communication attempts to minimize
power consumption by exploiting network parameters such
as topologies or node power levels. [Intanagonwiwat et al.
2000] describes a directed diffusion routing protocol that
uses diffusion coupled with reinforcement to establish short-
est paths between data sources and data sinks in a publish-
subscribe framework. The diffusion proceeds in an isotropic
fashion, reaching nearest neighbors first. In [Sohrabi 2000],
sensors in a network self-organize based on signal-noise-
ratios to perform cooperative processing tasks. Energy cost
for data transmission is explicitly used to plan paths for send-
ing data. Similarly, [Singh et al 1998] determines minimum
metric paths that minimize energy per packet as well as weigh-
ing the energy consumption by energy reserve on a node. This
way communication traffic can be steered away from low-
energy nodes. By comparison, CADR uses both communica-
tion or energy cost (e.g. expressed as a function of the dis-
tance) and information utility to anisotropically diffuse data,
generalizing the cost model used by the diffusion routing pro-
tocol. CADR allows estimation to either center at a query
proxy node or dynamically migrate among nodes. In another



related work, [Brooks et al. 2001] uses predictions from track-
ing to invoke sensor nodes with interest in a particular direc-
tion or region. In contrast, IDSQ/CADR uses the more gen-
eral information utility measure and cost function to locally
select the best sensors to query or route data to.

IDSQ/CADR is closely related to [Byers&Nasser 2000]
that uses a utility function to optimize node selection. In their
formulation, the utility function mapping a set of nodes to real
values is simply a step or sigmoid function, without explicit
modeling of network spatial configuration. IDSQ/CADR, in
contrast, models the uncertainty from a general information-
theoretic formulation and derives specific forms of the utility
functions for localization and tracking problems so that rout-
ing algorithms can exploit the spatial configuration of the net-
work to optimize node selection.

7 Conclusion
This paper presents a new approach to distributed, collabo-
rative signal processing in heterogeneous ad hoc sensor net-
works. The two key ideas that are outlined in this paper are
information-driven sensor querying (IDSQ) and constrained
anisotropic diffusion routing (CADR). Introducing an infor-
mation utility measure allows to dynamically select the best
subset of sensors among all possible sensors within the sen-
sor network.

The sensor selection is based upon constraints on the infor-
mation gain, subject to additional constraints on energy cost
and inter-node communication distance. Defining an incre-
mental algorithm for the estimation problem, and communi-
cating a compact representation of the belief state together
with the sensor query, allows to incrementally update the be-
lief during the routing of the query. Furthermore, all routing
decisions are based upon local computations in the routing
nodes exploiting the propagated belief state.

We presented experimental results on simulated sensor net-
works for the task of localization of stationary targets given
a sound amplitude based measurement model. The results
show that the information-driven sensor queries proposed in
this paper are more energy efficient, have lower latency, and
provide distributed anytime algorithms to mitigate the risk of
link/node failures.
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A Measurement Likelihood Function
Derivation

Based on the measurement model (11) of Section 4, a closed
form expression for the likelihood can be derived as

p(z1; : : : zN j x)

= p
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Assuming that �i, �, alow , ahigh, and xi are given a priori,
the likelihood function (viewed as a function of x) is param-
eterized by the measurement values z1; : : : ; zN .


