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Wireless sensor networks (or sensornets) represent a new computing platform that blends 

computation, sensing, and communication with a physical environment such as a bird habitat, 

bridges, or power grid. This new class of networked embedded computers requires new 

programming models, abstractions, and management tools. They change the way we think 

about computation and challenge the design of the next generation Internet that not only 

connects people together but also connects people with the physical environment. 

This computing platform is characterized by the embedding in the physical world and (often) 

unattended operation for years, severe constraints in resources especially energy, unreliable 

hardware and communication links, and the need to respond to time-critical events. The 

implications are twofold. A sensornet must gather and act on sensor data in a timely manner. 

The value of information and window of opportunity for action may dwindle as time elapses. 

Consequently, sensornets should support reliable and timely data collection and dissemination 

despite significant link and data variability and hardware flakiness. Second, because of limited 

battery capacity, a sensor node limits the amount of onboard memory and uses low-power 

microprocessor and low-date-rate radio with power-saving dials. The data collection and 

dissemination must be handled in an energy-efficient manner. 

A fundamental computer science question arising from sensornets is the role of energy and how 

we think about it in relation to performance and quality metrics such as latency and data yield. 

Much of CS has been built on the analysis of the time and space complexity of algorithms that 

has informed the design of processor, memory, and I/O in computing systems. Only recently 

have we confronted the energy problem head on, in designing high-performance servers as well 

as low-power sensornets (supercomputing addressed the cooling problem before). Multi/many-

core is one answer in the upper tier of the computing ecosystem. The tiny computers in 

sensornets expose another rich area where energy trades with performances in a decentralized, 

fine-grained way. For example, communication in data dissemination may be delayed, to reduce 

collision and hence energy due to excessive retransmission, at the expense of a larger latency. 

Sensor data may be locally compressed at the node, to reduce the data volume sent over the 

wireless, trading the communication energy with that of processing. This points to the need for 

establishing a theory of "energy complexity" in computing that provides models for energy and 

its tradeoffs with other system metrics.  

The decade of sensornet research has produced a rich collection of algorithms, protocols, 

system architectures, tools, and several generations of hardware platforms. The energy 

constraints, for example, led many to design extremely efficient systems that break the 

traditional networking and systems layers in order to squeeze the last Joule out of the operation. 

Naturally, one asks, what are the reusable building blocks and common abstractions that 

emerge from these works? Some of the techniques address the deeper problems of energy 

complexity, system scalability, and robustness. Others may just be artifacts of the current 

hardware limitations. 



Levis et al. answers the question with Trickle, a building block for algorithms that move data 

around quickly in a sensornet while conserving its limited energy. Realizing that the one-to-

many and many-to-one data dissemination and collection in a network rely on a common 

primitive to detect when the state of a node becomes inconsistent in a network of shared 

variables and to propagate the information when inconsistency arises, they propose an 

epidemic-style algorithm that does so on an as-needed basis. It was originally designed for 

distributing code in a sensornet, as in re-tasking or code patching. To detect whether a node 

has the latest version, each node declares to others which version it currently has. An 

inconsistency triggers the propagation on demand, suppressing the transmissions of others, 

thus more energy efficient than flooding. 

The key idea behind Trickle is to maintain a constant number of message transmissions per 

area, and use a feedback mechanism to regulate that as node density changes. A node only 

decides to transmit if it has not heard from a sufficient number of its neighbors. This way, the 

more nodes in an area, the less likely each node will decide to transmit as the likelihood of 

others already having advertised increases. Trickle provides the dials to trade energy 

expenditure of the network with the speed of the propagation. This self-regulation mechanism is 

similar to how nature regulates the population of a species, where growth is self limiting 

because of the finite sustainable food supply.  

A useful primitive finds itself in many applications. Trickle is promising; since the publication of 

the original paper, the idea of Trickle has found itself in data dissemination as well as data 

collection algorithms, including TinyOS 2.0 CTP, a data collection protocol. 

Gordon Bell posits every decade or so a new computing platform emerges due to advantages in 

form factor, interface, and functionality/price. The wireless sensor network is such a new 

computing platform. I expect emerging primitives and abstractions like Trickle, being developed 

by the research community, to help us conceptualize and modularize the design of this new 

platform and to become part of a standard TTL-like catalog for building scalable, reliable, and 

energy-efficient sensornet systems. 
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